填写推理理由如图,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.将∠E=∠1的过程填写完整.解:解:∵AD⊥BC,EF⊥BC(已知)∴∠ADC=∠EFC=90°(垂直的意义)∴AD//EF∴∠1=()∠E=()又∵AD平分∠BAC(已知-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-05 / 加入收藏 / 阅读 [打印]

题文

填写推理理由
如图,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.将∠E=∠1的过程填写完整.
解:解:∵AD⊥BC, EF⊥BC( 已知 )
∴∠ADC=∠EFC= 90°( 垂直的意义 )
∴AD//EF
∴∠1=     (  )
∠E=     (  )
又∵AD平分∠BAC( 已知 )
     =     
∴∠1=∠E.

题型:解答题  难度:偏易

答案

∠BAD;两直线平行,内错角相等;∠CAD;两直线平行,同位角相等;∠BAD;∠CAD.


试题分析:由AD垂直于BC,EF垂直于BC,得到一对同位角相等,利用同位角相等两直线平行得到AD与EF平行,利用两直线平行内错角相等得到一对角相等,再由AD为角平分线得到一对角相等,等量代换即可得证.
试题解析:∵AD⊥BC,EF⊥BC(已知)
∴∠ADC=∠EFC=90°(垂直的意义)
∴AD∥EF
∴∠1=∠BAD(两直线平行,内错角相等)
∴∠E=∠CAD(两直线平行,同位角相等)
又∵AD平分∠BAC(已知)
∴∠BAD=∠CAD  
∴∠1=∠E.

据专家权威分析,试题“填写推理理由如图,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.将∠E=∠..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐