有下列四个命题:①相等的角是对顶角;②同位角相等;③互补的角是邻补角;④平行于同一条直线的两条直线互相平行.其中是真命题的个数有()A.0个B.1个C.2个D.3个-数学

题文

有下列四个命题:①相等的角是对顶角;②同位角相等;③互补的角是邻补角;④平行于同一条直线的两条直线互相平行.其中是真命题的个数有(  )
A.0个 B.1个 C.2个 D.3个
题型:单选题  难度:中档

答案

B

据专家权威分析,试题“有下列四个命题:①相等的角是对顶角;②同位角相等;③互补的角是邻..”主要考查你对  对顶角,同位角,内错角,同旁内角,平行线的性质,平行线的公理,相交线,命题,定理  等考点的理解。关于这些考点的“档案”如下:

对顶角,同位角,内错角,同旁内角平行线的性质,平行线的公理相交线命题,定理

考点名称:对顶角,同位角,内错角,同旁内角

  • 对顶角
    一个角的两边分别是另一个角的反向延升线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
    两条直线相交,构成两对对顶角。互为对顶角的两个角相等(对顶角的性质)。
    对顶角是针对具有特殊位置的两个角的名称;
    对顶角相等反映的是两个角之间的大小关系。

    同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角。

    内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角。

    同旁内角: 两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角。

  • 各种角的关系图示:

    直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
    如图中,∠1与∠3,∠2与∠4是对顶角。
    其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;
    ∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;
    ∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

考点名称:相交线

  • 相交线:
    当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  • 相交线性质:

    ∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
    ∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
    ∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
    我们得到了对顶角的性质:对顶角相等。

  • 垂线:
    垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
    过一点有且只有一条直线与已知直线垂直。
    连接直线外一点与直线上各点的所有线段中,垂线段最短.
    简单说成:垂线段最短。
    直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

考点名称:命题,定理

  • 命题的概念:
    判断一件事情的语句,叫做命题。
    命题的概念包括两层含义:
    (1)命题必须是个完整的句子;
    (2)这个句子必须对某件事情做出判断。

    公理:
    人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

    定理:
    通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。
    一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
    如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。
    在命题逻辑中,所有已证明的叙述都称为定理。

    经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理。

  • 命题的分类:
    (按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
    所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
    所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

    四种命题:
    1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
    2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
    3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

    相互关系:
    1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐