设x*y=xy+2x+2y+2,x,y是任意实数,则(8*98*998*9998)*[(-3110)*(-3411)*(-3712)*(-4013)]=()A.14×1010-2B.14×1010C.14×109-2D.14×109-数学

题文

设x*y=xy+2x+2y+2,x,y是任意实数,则(8*98*998*9998)*[(-
31
10
)*(-
34
11
)*(-
37
12
)*(-
40
13
)]=(  )
A.14×1010-2B.14×1010C.14×109-2D.14×109
题型:单选题  难度:中档

答案

∵x*y=xy+2x+2y+2,
=xy+2x+2y+4-2,
=x(y+2)+2(y+2)-2,
=(y+2)(x+2)-2,
即:x*y=(y+2)(x+2)-2
∴8*98=(8+2)×(98+2)-2=998,
同理998*998=999998,
999998*9998=9 999 999 998,
(-
31
10
)*(-
34
11
)=-
4
5

(-
4
5
)*(-
37
12
)=-
33
10

(-
33
10
)*(-
40
13
)=-
3
5

∴原式=9 999 999 998*(-
3
5
)=(9 999 999 998+2)(-
3
5
+2)-2=14×109-2.
故选C.

据专家权威分析,试题“设x*y=xy+2x+2y+2,x,y是任意实数,则(8*98*998*9998)*[(-3110)..”主要考查你对  有理数的混合运算,因式分解  等考点的理解。关于这些考点的“档案”如下:

有理数的混合运算因式分解

考点名称:有理数的混合运算

  • 有理数的混合运算:
    是一个运算式子中有加有减有乘有除有次方等运算方式的混合运算方式。

  • 有理数混合运算的规律:
    (1)先乘方,再乘除,最后加减;
    (2)同级运算,从左到右进行;
    (3)若有括号,先做括号内的运算,按小括号、中括号、大括号依次进行计算。

考点名称:因式分解

  • 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
    它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

  • 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
    注意四原则:
    1.分解要彻底(是否有公因式,是否可用公式)
    2.最后结果只有小括号
    3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。

  • 因式分解中的四个注意
    ①首项有负常提负,
    ②各项有“公”先提“公”,
    ③某项提出莫漏1,
    ④括号里面分到“底”。
    现举下例,可供参考。
    例:
    把-a2-b2+2ab+4分解因式。
    解:-a2-b2+2ab+4
    =-(a2-2ab+b2-4)
    =-[(a-b)2-4]
    =-(a-b+2)(a-b-2)
    这里的“负”,指“负号”。
    如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;

    这里的“公”指“公因式”。
    如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

    这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

    分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。
    其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
    在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
    由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

  • 分解步骤:
    ①如果多项式的各项有公因式,那么先提公因式;
    ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
    ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
    ④分解因式,必须进行到每一个多项式因式都不能再分解为止。
    也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐