如下图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA证明:∵AD⊥BC,EF⊥BC()∴∠EFB=∠ADB=90°()∴EF∥AD()∴∠1=∠BAD()又∵∠1=∠2()∴_________()∴DG∥BA()。-七年级数学

首页 > 考试 > 数学 > 初中数学 > 平行线的判定/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

如下图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA
证明:∵AD⊥BC,EF⊥BC (                )
∴∠EFB=∠ADB=90°(               )
∴EF∥AD(                )
∴∠1=∠BAD(                    )
又∵∠1=∠2 (                     )
∴_________(                   )
∴DG∥BA(                 )。

题型:解答题  难度:中档

答案

解:∵AD⊥BC,EF⊥BC ( 已知 )
∴∠EFB=∠ADB=90°( 垂直定理 )
∴EF∥AD( 同位角相等,两直线平行 )
∴∠1=∠BAD( 两直线平行,同位角相等 )
又∵∠1=∠2 ( 已知 )
∴ ∠BAD=∠2 ( 等量代换 )
∴DG∥BA( 内错角相等,两直线平行 )。

据专家权威分析,试题“如下图,已知AD⊥BC,EF⊥BC,∠1=∠2,求证:DG∥BA证明:∵AD⊥BC,EF⊥B..”主要考查你对  平行线的判定  等考点的理解。关于这些考点的“档案”如下:

平行线的判定

考点名称:平行线的判定

  • 平行线的概念
    在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
    注意:
    ①平行线是无限延伸的,无论怎样延伸也不相交。
    ②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

  • 平行线的判定平行线的判定公理:
    (1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
    (2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
    (3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
    还有下面的判定方法:
    (1)平行于同一条直线的两直线平行。
    (2)垂直于同一条直线的两直线平行。
    (3)平行线的定义。

    判定方法的逆应用:
    在同一平面内,两直线不相交,即平行。
    两条直线平行于一条直线,则三条不重合的直线互相平行。
    两直线平行,同位角相等。
    两直线平行,内错角相等。
    两直线平行,同旁内角互补。
    6a⊥c,b⊥c则a∥b。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐