以下要求写出必要的演算步骤.(1)(3xy2)(﹣2xy)3;(2)(c﹣2b+3a)(2b+c﹣3a);(3)﹣2100×(0.5)99﹣(﹣1)99;(4)先化简再求值:(x+y)(x2+y2)(x﹣y)(x4+y4),其中x=()﹣1,y=﹣2;(5)如图-七年级数学
题文
以下要求写出必要的演算步骤. (1)(3xy2)(﹣2xy)3; (2)(c﹣2b+3a)(2b+c﹣3a); (3)﹣2100×(0.5)99﹣(﹣1)99; (4)先化简再求值:(x+y)(x2+y2)(x﹣y)(x4+y4),其中x=()﹣1,y=﹣2;(5)如图,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数. |
答案
解:(1)原式=3xy2(﹣8x3y3)=﹣24x4y5; (2)原式=[c+(3a﹣2b)][c﹣(3a﹣2b)], =c2﹣(3a﹣2b)2, =c2﹣4b2+12ab﹣9a2; (3)原式=﹣2×299×0.599﹣(﹣1), =﹣2×(2×0.5)99+1, =﹣2×1+1, =﹣1; (4)原式=[(x+y)(x﹣y)](x2+y2)(x4+y4), =(x2﹣y2)(x2+y2)(x4+y4), =(x4﹣y4)(x4+y4), =x8﹣y8, 当x=()﹣1=2,y=﹣2时,原式=28﹣(﹣2)8=0; (5)∵AB∥CD, ∴∠BEF=180°﹣EFD,∠CFG=∠GMA=52°, ∴∠GFD=180°﹣∠CFG=128° 又∵EF平分∠GFD, ∴∠EFD=∠GFD=64°, ∴∠BEF=180°﹣∠EFD=116°. |
据专家权威分析,试题“以下要求写出必要的演算步骤.(1)(3xy2)(﹣2xy)3;(2)(c﹣2b+3a)(2b..”主要考查你对 平行线的性质,平行线的公理,零指数幂(负指数幂和指数为1),整式的乘法,平方差公式,整式的加减乘除混合运算 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理零指数幂(负指数幂和指数为1)整式的乘法平方差公式整式的加减乘除混合运算
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
考点名称:零指数幂(负指数幂和指数为1)
- 零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
考点名称:整式的乘法
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。- 整式乘法运算:
单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
④.单项式乘法法则对于三个以上的单项式相乘同样适用.
⑤.单项式乘以单项式,结果仍是一个单项式.
单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
考点名称:平方差公式
- 表达式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |