如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、A-数学

题文

如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.
当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由
过点P作EF∥AC,如图2
因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD______.
所以∠BPE=∠PBD______.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD______,
即∠APB=∠PAC+∠PBD.
(1)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.
(2)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.
(3)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.


题型:解答题  难度:中档

答案

过点P作EF∥AC,如图2
因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行线的传递性).
所以∠BPE=∠PBD (两直线平行,内错角相等).
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD(等式性质),
即∠APB=∠PAC+∠PBD.
(1)过点P作EF∥AC,如图3,



因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行线的传递性).
所以∠BPF+∠PBD=180° (两直线平行,同旁内角互补).
同理∠APF+∠PAC=180° (两直线平行,同旁内角互补).
因此∠APF+∠BPF+∠PAC+∠PBD=360°(等式的基本性质),
即∠APB+∠PAC+∠PBD=360°.
(2)过点P作EF∥AC,如图4,



∠PAC=∠APB+∠PBD;
(3)过点P作EF∥AC,如图5,



∠PAC+∠APB=∠PBD.
故答案为:平行线的传递性,两直线平行,内错角相等,等量代换).

据专家权威分析,试题“如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐