说理填空:如图,已知AB∥CD,GH平分∠AGM,MN平分∠CMG,请说明GH⊥MN的理由.因为AB∥CD(已知),所以∠AGF+______=180°(______),因为GH平分∠AGF,MN平分∠CMG(______),所以∠1=12∠-数学

题文

说理填空:如图,已知AB∥CD,GH平分∠AGM,MN平分∠CMG,请说明GH⊥MN的理由.
因为AB∥CD(已知),
所以∠AGF+______=180°(______ ),
因为GH平分∠AGF,MN平分∠CMG(______ ),
所以∠1=
1
2
∠AGF,∠2=
1
2
∠CMG(______),
得∠1+∠2=
1
2
(∠AGF+∠CMG)=______,
所以GH⊥MN(______).
根据已知条件和所得结论请总结出一个规律:______.

题型:解答题  难度:中档

答案

∵AB∥CD(已知),
∴∠AGF+∠CHE=180°(两直线平行,同旁内角互补),
∵GH平分∠AGF,MN平分∠CMG(已知),
∴∠1=
1
2
∠AGF,∠2=
1
2
∠CMG(角平分线的定义),
得∠1+∠2=
1
2
(∠AGF+∠CMG)=90°,
∴GH⊥MN(垂直的定义).
根据已知条件和所得结论请总结出一个规律:两直线平行,同旁内角的角平分线互相垂直.
故答案为:∠CHE;两直线平行,同旁内角互补;已知;角平分线的定义;90°;垂直的定义;两直线平行,同旁内角的角平分线互相垂直.

据专家权威分析,试题“说理填空:如图,已知AB∥CD,GH平分∠AGM,MN平分∠CMG,请说明GH⊥M..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐