小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个结论,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况-数学
题文
小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个结论,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况,猜想相应的结论,并给出证明. |
题文
小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个结论,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况,猜想相应的结论,并给出证明. |
题型:解答题 难度:中档
答案
不认同. ①如图1,延长ED交AC于G,∵AB∥DE, ∴∠A=∠CGD, ∵AC∥DF, ∴∠FDE=∠CGD, ∴∠A=∠FDE; ②如图2,∵AC∥DF, ∴∠A=∠DGB, ∵AB∥DE, ∴∠DGB+∠D=180°, ∴∠A+∠D=180°; ③如图3,∵AC∥DF, ∴∠A=∠DGB, ∵AB∥DE, ∴∠DGB=∠D, ∴∠A=∠D. |
据专家权威分析,试题“小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那..”主要考查你对 平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。
平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |