小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个结论,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况-数学

题文

小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个结论,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况,猜想相应的结论,并给出证明.

题型:解答题  难度:中档

答案



不认同.
①如图1,延长ED交AC于G,∵AB∥DE,
∴∠A=∠CGD,
∵AC∥DF,
∴∠FDE=∠CGD,


∴∠A=∠FDE;

②如图2,∵AC∥DF,
∴∠A=∠DGB,
∵AB∥DE,
∴∠DGB+∠D=180°,


∴∠A+∠D=180°;

③如图3,∵AC∥DF,
∴∠A=∠DGB,
∵AB∥DE,
∴∠DGB=∠D,
∴∠A=∠D.

据专家权威分析,试题“小玲观察下图得出“如果一个角的两边与另一个角的两边分别平行,那..”主要考查你对  平行线的性质,平行线的公理  等考点的理解。关于这些考点的“档案”如下:

平行线的性质,平行线的公理

考点名称:平行线的性质,平行线的公理

  • 平行公理:过直线外一点有且只有一条直线与已知直线平行。
    推论(平行线的传递性):平行同一直线的两直线平行。
    ∵a∥c,c ∥b
    ∴a∥b。

    平行线的性质:
    1. 两条平行被第三条直线所截,同位角相等。
    简单说成:两直线平行,同位角相等。
    2. 两条平行线被第三条直线所截,内错角相等。
    简单说成:两直线平行,内错角相等。
    3 . 两条平行线被第三条直线所截,同旁内角互补。
    简单说成:两直线平行,同旁内角互补。

  • 平行线的性质公理注意:
    ①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
    ②平行公理体现了平行线的存在性和唯一性;
    ③平行公理的推论体现了平行线的传递性。
    ④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐