已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A、∠APC与∠C之间有什么确定-数学
题文
已知AB∥CD,线段EF分别与AB、CD相交于点E、F. (1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数; (2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A、∠APC与∠C之间有什么确定的相等关系?试证明你的结论; (3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明. |
答案
(1)过点P作PQ∥AB, ∴∠APQ=∠A=25°. ∴∠QPC=∠APC-∠APQ=45°. ∵AB∥CD,PQ∥AB, ∴CD∥PQ. ∴∠C=∠QPC=45°. (2)∠C=∠APC-∠A. 证明如下:过点P作PQ∥AB. ∴∠APQ=∠A. ∴∠QPC=∠APC-∠APQ=∠APC-∠A. ∵AB∥CD,PQ∥AB, ∴CD∥PQ. ∴∠C=∠QPC. ∴∠C=∠APC-∠A. (3)不成立,新的相等关系为∠C=∠APC+∠A. 证明:设AB与CP相交于Q,则∠PQB=∠APC+∠A. ∵AB∥CD, ∴∠C=∠PQB, ∴∠C=∠APC+∠A. |
据专家权威分析,试题“已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°..”主要考查你对 平行线的性质,平行线的公理 等考点的理解。关于这些考点的“档案”如下:
平行线的性质,平行线的公理
考点名称:平行线的性质,平行线的公理
平行公理:过直线外一点有且只有一条直线与已知直线平行。
推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b
∴a∥b。平行线的性质:
1. 两条平行被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
2. 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
3 . 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。- 平行线的性质公理注意:
①注意条件“经过直线外一点”,若经过直线上一点作已知直线的平行线,就与已知直线重合了;
②平行公理体现了平行线的存在性和唯一性;
③平行公理的推论体现了平行线的传递性。
④在两直线平行的前提下才存在同位角相等、内错角相等、同旁内角互补的结论。这是平行线特有的性质。不要一提同位角或内错角就认为他们相等,一提同旁内角就认为互补,若没有两直线平行的条件,他们是不成立的。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,DE∥AB,若∠ACD=55°,则∠A等于()A.35°B.55°C.65°D.125°-数学
下一篇:如图,AB∥CD,BF平分∠ABE,且BF∥DE,试探究∠ABF与∠CDE之间的数量关系,并证明之.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |