已知AB∥CD,EF交AB、CD于M、N,MG平分∠BMN,NG平分∠MND,则MG、GN有什么样的位置关系?请说明理由。-七年级数学
题文
已知AB∥CD,EF交AB、CD于M、N,MG平分∠BMN,NG平分∠MND,则MG、GN有什么样的位置关系?请说明理由。 |
答案
解:MG⊥NG。 理由如下: ∵AB∥CD, ∴∠BMN+∠MND=180°, 而MG、NG分别平分∠BMN、∠MND, ∴∠GMN+∠MND=90°, ∴MG⊥NG。 |
据专家权威分析,试题“已知AB∥CD,EF交AB、CD于M、N,MG平分∠BMN,NG平分∠MND,则MG、G..”主要考查你对 垂直的判定与性质,角平分线的性质 等考点的理解。关于这些考点的“档案”如下:
垂直的判定与性质角平分线的性质
考点名称:垂直的判定与性质
- 垂线的定义:
两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
垂直的判定:垂线的定义。
考点名称:角平分线的性质
角平分线:
三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。角平方线定理:
①角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。
②角平分线能得到相同的两个角,都等于该角的一半。
③三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
④三角形的三个角的角平分线相交于一点,这个点称为内心 ,即以此点为圆心可以在三角形内部画一个内切圆。
逆定理:
在角的内部,到角两边的距离相等的点在角平分线上。- 角平分线作法:
在角AOB中,画角平分线
方法一:
1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3.作射线OP。
则射线OP为角AOB的角平分线。
当然,角平分线的作法有很多种。下面再提供一种尺规作图的方法供参考。
方法二:
1.在两边OA、OB上分别截取OM、OA和ON、OB,且使得OM=ON,OA=OB;
2.连接AN与BM,他们相交于点P;
3.作射线OP。
则射线OP为角AOB的角平分线。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |