如图,直线BC、DE交于点O,OA、OF为射线,OA⊥OB,OF平分∠COE,∠COF+∠BOD=51°,求∠AOD的度数.-数学
题文
如图,直线BC、DE交于点O,OA、OF为射线,OA⊥OB,OF平分∠COE,∠COF+∠BOD=51°,求∠AOD的度数. |
题文
如图,直线BC、DE交于点O,OA、OF为射线,OA⊥OB,OF平分∠COE,∠COF+∠BOD=51°,求∠AOD的度数. |
题型:解答题 难度:中档
答案
设∠COF=x, ∵OF平分∠COE, ∴∠COE=2∠COF=2x, ∴∠BOD=∠COE=2x(对顶角相等), ∵∠COF+∠BOD=51°, ∴x+2x=51°, 解得x=17°, ∴∠BOD=2×17°=34°, ∵OA⊥OB, ∴∠AOB=90°, ∴∠AOD=∠AOB+∠BOD=90°+34°=124°. |
据专家权威分析,试题“如图,直线BC、DE交于点O,OA、OF为射线,OA⊥OB,OF平分∠COE,∠C..”主要考查你对 垂直的判定与性质,相交线 等考点的理解。关于这些考点的“档案”如下:
垂直的判定与性质相交线
考点名称:垂直的判定与性质
考点名称:相交线
相交线性质:
∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
我们得到了对顶角的性质:对顶角相等。
垂线:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短.
简单说成:垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |