完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b证明:∵a⊥c(已知)∴∠1=______(垂直定义)∵b∥c(已知)∴∠1=∠2(______)∴∠2=∠1=90°(______)∴a⊥b(______)(2)如图2:AB∥CD,∠B+∠D=1-数学

题文

完成下面证明:



(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b
证明:∵a⊥c  (已知)
∴∠1=______(垂直定义)
∵b∥c (已知)
∴∠1=∠2  (______)
∴∠2=∠1=90° (______)
∴a⊥b      (______)
(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE
证明:∵AB∥CD (已知)
∴∠B=______(______)
∵∠B+∠D=180° (已知)
∴∠C+∠D=180° (______)
∴CB∥DE   (______)
题型:解答题  难度:中档

答案



(1)证明:如图1,∵a⊥c(已知),
∴∠1=90°(垂直定义),
∵b∥c(已知),
∴∠1=∠2(两直线平行,同位角相等 ),
∴∠2=∠1=90°(等量代换 ),
∴a⊥b(垂直的定义 );

(2)证明:如图2,∵AB∥CD (已知),
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换 ),
∴CB∥DE(同旁内角互补,两直线平行 ).
故答案是:(1)∠2;两直线平行,同位角相等;等量代换;垂直的定义;
(2)∠C;两直线平行,内错角相等;等量代换;同旁内角互补,两直线平行.

据专家权威分析,试题“完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b证明:∵a⊥c(已..”主要考查你对  垂直的判定与性质  等考点的理解。关于这些考点的“档案”如下:

垂直的判定与性质

考点名称:垂直的判定与性质

  • 垂线的定义:
    两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
    垂线的性质:
    性质1:过一点有且只有一条直线与已知直线垂直。
    性质2:连结直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
    垂直的判定:垂线的定义。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐