如图,直线AB:y=12x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,52)B.(8,5)C.(4,3)-数学

首页 > 考试 > 数学 > 初中数学 > 相交线/2020-01-06 / 加入收藏 / 阅读 [打印]

题文

如图,直线AB:y=
1
2
x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是(  )
A.(3,
5
2
B.(8,5)C.(4,3)D.(
1
2
5
4

题型:单选题  难度:中档

答案

由直线AB:y=
1
2
x+1分别与x轴、y轴交于点A,点B,
可知A,B的坐标分别是(-2,0),(0,1),
由直线CD:y=x+b分别与x轴,y轴交于点C,点D,
可知D的坐标是(0,b),C的坐标是(-b,0),
根据S△ABD=4,得BD?OA=8,
∵OA=2,∴BD=4,
那么D的坐标就是(0,-3),C的坐标就应该是(3,0),
CD的函数式应该是y=x-3,
P点的坐标满足方程组

y=
1
2
x+1
y=x-3

解得

x=8
y=5

即P的坐标是(8,5).
故选B.

据专家权威分析,试题“如图,直线AB:y=12x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b..”主要考查你对  相交线  等考点的理解。关于这些考点的“档案”如下:

相交线

考点名称:相交线

  • 相交线:
    当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  • 相交线性质:

    ∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
    ∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
    ∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,
    我们得到了对顶角的性质:对顶角相等。

  • 垂线:
    垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
    经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
    过一点有且只有一条直线与已知直线垂直。
    连接直线外一点与直线上各点的所有线段中,垂线段最短.
    简单说成:垂线段最短。
    直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐