如图,CD是⊙O的直径,O是圆心,E是圆上一点,且∠EOD=80°,A是DC延长线上一点,AE与半圆交于一点B,AB=OC,则∠EAD=______.-数学
题文
如图,CD是⊙O的直径,O是圆心,E是圆上一点,且∠EOD=80°,A是DC延长线上一点,AE与半圆交于一点B,AB=OC,则∠EAD=______. |
题文
如图,CD是⊙O的直径,O是圆心,E是圆上一点,且∠EOD=80°,A是DC延长线上一点,AE与半圆交于一点B,AB=OC,则∠EAD=______. |
题型:填空题 难度:中档
答案
连OB,如图, ∵AB=OC,OB=OC, ∴AB=BO, ∴∠EAD=∠2, ∴∠1=∠EAD+∠2=2∠EAD, 又∵OE=OB, ∴∠1=∠E, 又∵∠1=∠2+∠EAD=2∠EAD, ∴∠E=2∠EAD, ∴∠EOD=3∠EAD=80°, 所以∠A=
故答案为:
|
据专家权威分析,试题“如图,CD是⊙O的直径,O是圆心,E是圆上一点,且∠EOD=80°,A是DC延..”主要考查你对 三角形的外角性质,圆的认识 等考点的理解。关于这些考点的“档案”如下:
三角形的外角性质圆的认识
考点名称:三角形的外角性质
三角形的外角特征:
①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
性质:
①. 三角形的外角与它相邻的内角互补。
②. 三角形的一个外角等于和它不相邻的两个内角的和。
③. 三角形的一个外角大于任何一个和它不相邻的内角。
④. 三角形的外角和等于360°。
设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。
定理:三角形的一个外角等于不相邻的两个内角和。
定理:三角形的三个内角和为180度。
考点名称:圆的认识
圆的字母表示:
以点O为圆心的圆记作“⊙O”,读作O”。
圆—⊙ ;
半径—r或R(在环形圆中外环半径表示的字母);
弧—⌒ ;
直径—d ;
扇形弧长—L ;
周长—C ;
面积—S。
圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
点、线、圆与圆的位置关系:
点和圆位置关系
①P在圆O外,则 PO>r。
②P在圆O上,则 PO=r。
③P在圆O内,则 0≤PO<r。
反过来也是如此。
直线和圆位置关系
①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |