如图,在△ABC中,∠BAC是钝角,请画出AB边上的高CD,BC边上的中线AE,并将△ABC沿AE方向平移AE的长度.(请保留作图痕迹,并写出结论)-七年级数学

题文

如图,在△ABC中,∠BAC是钝角,请画出AB边上的高CD,BC边上的中线AE,并将△ABC沿AE方向平移AE的长度.(请保留作图痕迹,并写出结论)

题型:操作题  难度:中档

答案

图“略”

据专家权威分析,试题“如图,在△ABC中,∠BAC是钝角,请画出AB边上的高CD,BC边上的中线..”主要考查你对  三角形的中线,角平分线,高线,垂直平分线,平移  等考点的理解。关于这些考点的“档案”如下:

三角形的中线,角平分线,高线,垂直平分线平移

考点名称:三角形的中线,角平分线,高线,垂直平分线

  • 三角形的中线:
    在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。
    每条三角形中线分得的两个三角形面积相等。
    角平分线:
    三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
    三角形的角平分线不是角的平分线,是线段。角的平分线是射线。
    高线:
    从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
    线段的垂直平分线:
    经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

    <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
    巧计方法:点到线段两端距离相等。

  • 三角形中线性质定理:
    1
    、三角形的三条中线都在三角形内。<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    2、三角形的三条中线长:

    ma=(1/2)2b2+2c2 -a2

    mb=(1/2)2c2 +2a2 -b

    mc=(1/2)2a2 +2b2 -c

    (ma,mb,mc分别为角A,B,C所对的中线长)

    3、三角形的三条中线交于一点,该点叫做三角形的重心。

    4、直角三角形斜边上的中线等于斜边的一半。

    5.三角形中线组成的三角形面积等于这个三角形面积的3/4.

    定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

     

    角平分线线定理:
    定理1:在角平分线上的任意一点到这个角的两边距离相等。
    逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
    定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
    如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
    注:定理2的逆命题也成立。
    三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

     

    垂直平分线的性质:
    1.垂直平分线垂直且平分其所在线段。  
    2.垂直平分线上任意一点,到线段两端点的距离相等。  
    3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  
    垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  • <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />垂直平分线的尺规作法:
    方法一:
    1、取线段的中点。
    2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。
    3、连接这两个交点。
    原理:等腰三角形的高垂直等分底边。
    方法二:
    1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。
    2、连接这两个交点。原理:两点成一线。
    垂直平分线的概念:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)

考点名称:平移

  • 定义:
    将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

  • 平移基本性质:
    经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
    平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
    (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
    (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
    (3)多次连续平移相当于一次平移。
    (4)偶数次对称后的图形等于平移后的图形。
    (5)平移是由方向和距离决定的。
    这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
    平移的条件:确定一个平移运动的条件是平移的方向和距离。

    平移的三个要点
    1 原来的图形的形状和大小和平移后的图形是全等的。
    2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
    3 平移的距离。(长度,如7厘米,8毫米等)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐