如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线.-数学
题文
如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线. |
题文
如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线. |
题型:解答题 难度:中档
答案
证明:连接OC, ∵PA⊥AB, ∴∠PA0=90°.(1分) ∵PO过AC的中点M,OA=OC, ∴PO平分∠AOC. ∴∠AOP=∠COP.(3分) ∴在△PAO与△PCO中有OA=OC,∠AOP=∠COP,PO=PO. ∴△PAO≌△PCO.(6分) ∴∠PCO=∠PA0=90°. 即PC是⊙O的切线.(7分) |
据专家权威分析,试题“如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点..”主要考查你对 三角形的内心、外心、中心、重心,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离) 等考点的理解。关于这些考点的“档案”如下:
三角形的内心、外心、中心、重心直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
考点名称:三角形的内心、外心、中心、重心
考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)
直线与圆的位置关系:
直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |