若9+13与9-13的小数部分分别为a与b,则a+b=______.-数学
,所以3>
②、 同是负数:
根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、 一正一负:
正数大于一切负数。
二、隐含条件法:
根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立
所以a-2≧0即a≧2
所以1-a≦-1
所以≧0,≦-1
所以>
三、同次根式下比较被开方数法:
例:比较4与5大小
因为
四、作差法:
若a-b>0,则a>b
例:比较3-与-2的大小
因为3---2
=3--+2
=5-2
<=2.5
所以:5-2>0
即3->-2
五、作商法:
a>0,b>0,若>1,则a>b
例:比较与的大小
因为÷
=×
=<1
所以:<
六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较与的大小
因为>1,1>
所以>
②、 同是负数:
根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、 一正一负:
正数大于一切负数。
二、隐含条件法:
根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立
所以a-2≧0即a≧2
所以1-a≦-1
所以≧0,≦-1
所以>
三、同次根式下比较被开方数法:
例:比较4与5大小
因为
四、作差法:
若a-b>0,则a>b
例:比较3-与-2的大小
因为3---2
=3--+2
=5-2
<=2.5
所以:5-2>0
即3->-2
五、作商法:
a>0,b>0,若>1,则a>b
例:比较与的大小
因为÷
=×
=<1
所以:<
六、找中间量法
要证明a>b,可找中间量c,转证a>c,c>b
例:比较与的大小
因为>1,1>
所以>
七、平方法:
a>0,b>0,若a2>b2,则a>b。
例:比较与的大小
()2=5+2+11=16+2
()2=6+2+10=16+2
所以:<
八、倒数法:
九、有理化法:
可分母有理化,也可分子有理化。
十、放缩法:
常用无理数口诀记忆:
√2≈1.41421:意思意思而已
√3≈1.7320:一起生鹅蛋
√5≈2.2360679:两鹅生六蛋(送)六妻舅
√7≈2.6457513:二妞是我,气我一生
√8=2√2≈2.82842啊,不啊不是啊
e≈2.718:粮店吃一把
π≈3.14159,26535,897,932,384,262:
山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知a是4-3的小数部分,那么代数式(a2+a-2a2+4a+4+aa2+2a)?(a-4a)的值为______.-数学
下一篇:设a为5的小数部分,b为6的小数部分,求2b-1a的值.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |