下列各数中,哪些是有理数,哪些是无理数?(3.141592,π2,16,327,0.?5,0,-23,0.1313313331…(两个1之间依次多一个3).有理数是______.无理数是______.-数学

首页 > 考试 > 数学 > 初中数学 > 实数的定义/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

下列各数中,哪些是有理数,哪些是无理数?
( 3.141592,
π
2

16
327

,0.
?
5
,0,-
2
3
,0.1313313331…(两个1之间依次多一个3).
有理数是______.
无理数是______.
题型:填空题  难度:中档

答案

在3.141592,
π
2

16
327

,0.
?
5
,0,-
2
3
,0.1313313331…中,
有理数是:3.141592,

16
327

,0.
?
5
,0,-
2
3

无理数是:
π
2
,0.1313313331…,
故答案为:3.141592,

16
327

,0.
?
5
,0,-
2
3
π
2
,0.1313313331….

据专家权威分析,试题“下列各数中,哪些是有理数,哪些是无理数?(3.141592,π2,16,3..”主要考查你对  实数的定义  等考点的理解。关于这些考点的“档案”如下:

实数的定义

考点名称:实数的定义

  • 实数定义:
    实数由有理数和无理数组成,其中无理数就是无限不循环小数,有理数就包括整数和分数。
    数学上,实数直观地定义为和数轴上的点一一对应的数。
    本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

  • 实数的定义分析:
    1.实数可以分为有理数(如31、)和无理数(如π、)两类,或代数数和超越数两类,或正数,负数和零三类。
    2.实数集合通常用字母“R”表示。实数可以用来测量连续的量。
    3.理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
    在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。
    4.通常把正实数和零合称为分负数,把负实数和零合称为非正数。
    5.任何两个实数之间都有无数个有理数和无理数。

  • 实数的性质:
    1.基本运算:
    实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
    实数加、减、乘、除(除数不为零)、平方后结果还是实数。
    任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
    有理数范围内的运算律、运算法则在实数范围内仍适用:
    交换律:a+b=b+a , ab=ba
    结合律:(a+b)+c=a+(b+c)
    分配律:a(b+c)=ab+ac

    2.实数的相反数:
    实数的相反数的意义和有理数的相反数的意义相同。
    实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
    实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

    3.实数的绝对值:
    实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
    一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐