如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分别为边AB、AC的中点,连结DE,点P从点A出发,沿折线AE-ED-DB运动,到点B停止.点P在折线AE-ED上以每秒1个单位的速度运动,在-九年级数学

首页 > 考试 > 数学 > 初中数学 > 计算器的使用/2019-02-24 / 加入收藏 / 阅读 [打印]

题文

如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分别为边AB、AC的中点,连结DE,点P从点A出发,沿折线AE-ED-DB运动,到点B停止.点P在折线AE-ED上以每秒1个单位的速度运动,在DB上以每秒个单位的速度运动. 过点P作PQ⊥BC于点Q,以PQ为边在PQ右侧作正方形PQMN,使点M落在线段BC上.设点P的运动时间为秒().

(1)在整个运动过程中,求正方形PQMN的顶点N落在AB边上时对应的的值;
(2)连结BE,设正方形PQMN与△BED重叠部分图形的面积为S,请直接写出S与之间的函数关系式和相应的自变量的取值范围;
(3)当正方形PQMN顶点P运动到与点E重合时,将正方形PQMN绕点Q逆时针旋转60°得正方形
P1 Q M1 N1,问在直线DE与直线AC上是否存在点G和点H,使△GHP1是等腰直角三角形? 若
存在,请求出EG的值;若不存在,请说明理由.

题型:解答题  难度:中档

答案

(1)t="2s" (2) (3)在直线DE与直线AC上存在点G和点H,使△GHP1是等腰直角三角形,


试题分析:(1)当点P在AE上时, 由△APN∽△ACB得
       ∴t=2s         
当点P在ED上时,PN="3" ,∴AE+EP=3+6-3=6  ∴t=6s   
(2) 
(3)在直线DE与直线AC上存在点G和点H,使△GHP1是等腰直角三角形. 理由如下:
过P1作P1S⊥AC于S, P1R⊥DE于R,

分别是图1 2 3 4
∵∠P1QS=60°,P1Q=3,
∴P1S=RE=, QS
∴P1R=SE=.
当∠P1GH=90°时,
可证△P1RG≌△GEH,则EG= P1R= 
当∠P1HG=90°时, (如图3、4)
可证△P1SH≌△HEG,
∴EH=P1S=,EG=SH,
点评:本题考查相似三角形,全等三角形,函数关系式,解答本题需要掌握相似三角形,全等三角形的判定方法,并会证明

据专家权威分析,试题“如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分别为边AB、AC的..”主要考查你对  计算器的使用,截一个几何体 ,七巧板   等考点的理解。关于这些考点的“档案”如下:

计算器的使用截一个几何体 七巧板

考点名称:计算器的使用

  • 计算器:
    这一小小的程序机器实际上是从计算机中割裂出来的衍生品,但因其方便快捷的操作模式,已经被广泛应用于工程、学习、商业等日常生活中,极大的方便了人们对于数字的整合运算。

  • 科学计算器中的按键含义:
    Backspace :删除当前输入的最后一位数。
    CE :清除当前显示的数,不影响已经输入的数。
    C :清除当前的计算,开始新的计算。
    MC :清除存储器中的数据。
    MR:调用存储器中的数据。
    MS:存储当前显示的数据。
    M+:将显示的数据加到存储器中,与已存入的数据相加。
    Mod求模(即整数相除求余数)
    And按位与, Or按位或, Xor按位异或
    Lsh左移, Not按位取反, Int取整数部分
    pi圆周率, Exp允许输入用科学计数法表示的数字
    dms度分秒切换
    cos余弦, sin正弦, tan正切,
    log常用对数, n!阶乘, ln自然对数,
     F-E科学计数法开关

  • 普通计算器的使用方法:
    M+:是计算结果并加上已经储存的数;中断数字输入.
    M-:从存储器内容中减去当前显示值;中断数字输入.
    MRC:第一次按下此键将调用存储器内容,第二次按下时清除存储器内容.
    MR:调用存储器内容.
    MC:清除存储器内容.
    GT:按下GT键,传送GT存储寄存器内容到显示寄存器;按AC或C键消除GT显示标志.
    例如:文具店卖出笔3支,每支10元;胶带2卷,每卷9.5元;橡皮3个,每个1.2元,如果用计算器,如何计算他们的总和?
    可以先计算器上算出10*3=30后,按M+存起来(存储器默认存着0),再按9.5*2=,算出结果后按M+,再按1.2*3=得到结果后再按M+这样存储器里就是这几个结果的加和了,再按MR就出来结果了。

考点名称:截一个几何体

  • 截面的定义:
    用一个平面去截一个几何体,截出的面叫截面。由前面的知识知道,“面与面相交得到线”,用平面去截几何体,所得到的截面就是这个平面与几何体每个面相交所围成的图形。

  • 用平面截一个几何体所得截面的形状:
    截面的形状多为圆和多边形,也可能是不规则图形,一般与下面两点有关:
    (1)几何体的形状;
    (2)切截的方向和角度。
    一般的,截面与几何体的几个面相交,就得到几条交线,截面与平面相交就得到几边形;
    截面与曲面相交,得到曲线,截面是圆或不规则图形。

  • 几种常见几何体的截面:
    ①正方体的截面有:
    三角形,等腰三角形,等边三角形;
    正方形,长方形,平行四边形,菱形,梯形
    五边形,六边形
    ②圆柱的截面:
    圆,椭圆,长方形,不规则图形;
    ③圆锥的截面:
    圆,椭圆,等腰三角形,不规则图形

  • 正方体截面图情况:

考点名称:七巧板

  • 七巧板:
    是一种智力游戏,顾名思义,是由七块板组成的。而这七这块板可拼成许多图形(1600种以上),例如:三角形、平行四边形、不规则多边形、玩家也可以把它拼成各种人物、形象、动物、桥、房、塔等等,亦可是一些中、英文字母。

  • 游戏规则:
    七巧板是一种拼图游戏,它是用七块板,以各种不同的拼凑法来拼搭千变万化的形象图案。
    将一块正方形的板按图所示分割成七块,就成了七巧板。用这七块板可以拼搭成几何图形,如三角形、平行四边形、不规则的多角形等;也可以拼成各种具体的人物形象,或者动物,如猫、狗、猪、马等;或者是桥、房子、宝塔,或者是一些中、英文字符号以及数字。

    具体玩法:
    通常,用七巧板拼摆出的图形应当由全部的七块板组成,且板与板之间要有连接,如点的连接、线的连接或点与线的连接;可以一个人玩,也可以几个人同时玩。
    七巧板的玩法有4种:
    ①依图成形,即从已知的图形来排出答案;
    ②见影排形,从已知的图形找出一种或一种以上的排法;
    ③自创图形,可以自己创造新的玩法、排法;
    ④数学研究,利用七巧板来求解或证明数学问题。
    七巧板按不同的方法拼摆、组合可以拼排成各种各样的几何图形和形象,如桥梁、船只、房屋、手枪或是跑步、跌倒、玩耍、跳舞、站立的人物以及戏水的鱼、猫、狗等。
    操作七巧板是一种发散思维活动,有利于培养人们的观察力、注意力、想像力和创造力,因此,不仅具有娱乐的价值,还具有一定的教育价值,被人们运用到了教学当中。
    由于七巧板可以持续不断地反复组合,已引起哲学、心理学、美学等多领域的研究者的兴趣,还被作为制作商业广告和印章的辅助手段。

  • 七巧板的好处与用处简直是多不胜数,例如:形状概念、视觉分辨、认智技巧、视觉记忆、手眼协调、鼓励开放、扩散思考、创作机会。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐