解答下列问题:(1)先化简,再求值4x2-{-3x2-[5x-x2-(2x2-x)]+4x},其中x=;(2)单项式x3ym是六次单项式,求(-2)m的值。-七年级数学
题文
解答下列问题: (1)先化简,再求值4x2-{-3x2-[5x-x2-(2x2-x)]+4x},其中x=; (2)单项式x3ym是六次单项式,求(-2)m的值。 |
答案
解:(1)原式=4x2-[-3x2-(5x-x2-2x2+x)+4x] =4x2-(-3x2-6x+3x2+4x) =4x2+2x, 把x=代入其中, 得:原式=。 (2)m+3=6,m=3, ∴(-2)m=(-2)3=8。 |
据专家权威分析,试题“解答下列问题:(1)先化简,再求值4x2-{-3x2-[5x-x2-(2x2-x)]+4x},..”主要考查你对 代数式的求值 ,单项式 等考点的理解。关于这些考点的“档案”如下:
代数式的求值 单项式
考点名称:代数式的求值
- 代数式的值:
用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。 - 代数式求值的步骤:
(1)代入;
(2)计算。
常用的代入方法有直接代入法与整体代入法。
注:代数式的值的取值条件:
(1)不能使代数式失去意义;
(2)不能使所表示的实际问题失去意义。 - 求代数式的值的方法:
①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。
考点名称:单项式
- 单项式:
表示数或字母的积的式子叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。 单项式性质:
1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。
分母中不含字母(单项式是整式,而不是分式)
a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。
2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。
3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。
5.如果一个单项式,只含有数字因数,那么它的次数为0。
6.0也是数字,也属于单项式。
7.有分数也属于单项式。
单项式的次数与系数:
1.单项式是字母与数的乘积。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
单项式的系数:单项式中的数字因数。
单项式是几次,就叫做几次单项式。
如:2xy的系数是2;-5zy 的系数是-5
字母t的指数是1,100t是一次单项式;
在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
如:xy ,3,a z,ab,b ...... 都是单项式。
单项式书写规则:
1.单项式表示数与字母相乘时,通常把数写在前面;
2.乘号可以省略为点或不写;
3.除法的式子可以写成分数式;
4.带分数与字母相乘,带分数要化为假分数
5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)
6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。
7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)
8.单独的数“0”的系数是零,次数也是零。
9.常数的系数是它本身,次数为零。单项式的运算法则:
加减法则
单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。
例如:3a+4a=7a,9a-2a=7a等。
同时还要运用到去括号法则和添括号法则。
乘法法则
单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
例如:3a·4a=12a^2
除法法则
同底数幂相除,底数不变,指数相减。
例如:9a10÷3a5=3a5
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |