已知a2-5ab+6b2=0,则ab+ba等于()A.212B.313C.212或313D.-212或-313-数学

首页 > 考试 > 数学 > 初中数学 > 代数式的求值/2019-02-26 / 加入收藏 / 阅读 [打印]

题文

已知a2-5ab+6b2=0,则
a
b
+
b
a
等于(  )
A.2
1
2
B.3
1
3
C.2
1
2
或3
1
3
D.-2
1
2
或-3
1
3
题型:单选题  难度:偏易

答案

a2-5ab+6b2=(a-2b)(a-3b)=0,
解得a=2b或a=3b,
a
b
+
b
a
=2+
1
2
=2
1
2

a
b
+
b
a
=3+
1
3
= 3
1
3

故选C.

据专家权威分析,试题“已知a2-5ab+6b2=0,则ab+ba等于()A.212B.313C.212或313D.-212或-..”主要考查你对  代数式的求值 ,因式分解  等考点的理解。关于这些考点的“档案”如下:

代数式的求值 因式分解

考点名称:代数式的求值

  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。

  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

考点名称:因式分解

  • 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
    它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

  • 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
    注意四原则:
    1.分解要彻底(是否有公因式,是否可用公式)
    2.最后结果只有小括号
    3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。

  • 因式分解中的四个注意
    ①首项有负常提负,
    ②各项有“公”先提“公”,
    ③某项提出莫漏1,
    ④括号里面分到“底”。
    现举下例,可供参考。
    例:
    把-a2-b2+2ab+4分解因式。
    解:-a2-b2+2ab+4
    =-(a2-2ab+b2-4)
    =-[(a-b)2-4]
    =-(a-b+2)(a-b-2)
    这里的“负”,指“负号”。
    如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;

    这里的“公”指“公因式”。
    如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

    这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

    分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。
    其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
    在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
    由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。