计算或化简:(1)8-2(2+2);(2)23-1+27-(3-1)0+(-2)-2-313;(3)(6x4-2x1x)÷3x;(4)已知:x=23-1,求x2-x+1的值.-数学

首页 > 考试 > 数学 > 初中数学 > 代数式的求值/2019-02-26 / 加入收藏 / 阅读 [打印]

3-1+
1
4
-

3

=3

3
+
1
4


(3)(6

x
4
-2x

1
x
)÷3

x

=(3

x
-2

x
)÷3

x

=
1
3


(4)∵x=
2

3
-1
=

3
+1,
∴x2-x+1,
=(

3
+1)2-(

3
+1)+1,
=4+2

3
-

3
-1+1,
=4+

3

据专家权威分析,试题“计算或化简:(1)8-2(2+2);(2)23-1+27-(3-1)0+(-2)-2-313;(3)(6x..”主要考查你对  代数式的求值 ,零指数幂(负指数幂和指数为1),二次根式的加减乘除混合运算,二次根式的化简,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

代数式的求值 零指数幂(负指数幂和指数为1)二次根式的加减乘除混合运算,二次根式的化简最简二次根式

考点名称:代数式的求值

  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。

  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。