历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例-数学

首页 > 考试 > 数学 > 初中数学 > 代数式的求值/2019-02-26 / 加入收藏 / 阅读 [打印]

题文

历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.已知g(x)=-2x2-3x+1,h(x)=ax3+2x2-x-12.
(1)求g(-2)值;
(2)若h(
1
2
)=-11,求g(a)的值.
题型:解答题  难度:中档

答案

(1)g(-2)=-2×(-2)2-3×(-2)+1
=-2×4-3×(-2)+1
=-8+6+1
=-1;

(2)∵h(
1
2
)=-11,
∴a×(
1
2
3+2×(
1
2
2-
1
2
-12=-11,
解得:
1
8
a=1,
即a=8
∴g(a)=-2×82-3×8+1
=-2×64-24+1
=-128-24+1
=-151.

据专家权威分析,试题“历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字..”主要考查你对  代数式的求值   等考点的理解。关于这些考点的“档案”如下:

代数式的求值

考点名称:代数式的求值

  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。

  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。