已知A=a33a2+2a1,B=2a3+2a24a5,试将多项式3A2(2B+)化简后,按a的降幂排列写出。-七年级数学

首页 > 考试 > 数学 > 初中数学 > 整式的加减/2019-02-26 / 加入收藏 / 阅读 [打印]

6.多项式除以多项式的一般步骤:多项式除以多项式,一般用竖式进行演算。
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
(2)用除式的第一项去除被除式的第一项,得商式的第一项.
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积.
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式
如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除.
(5)如果被除式能分解因式且有因式与除式中的因式相同的,可以把被除式、除式分解因式。
最重要的是必注意各项系数的符号。

整式的四则运算:
整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。
加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。
1. 整式的加减
合并同类项是重点,也是难点。合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,多项式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。
2. 整式的乘除
重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
整式四则运算的主要题型有:
(1)单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
(2)单项式与多项式的运算
此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。

考点名称:同类项

  • 同类项:
    所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
    像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数)

  • 同类项性质:
    (1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;
    (2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;
    (3)所有的常数项都是同类项。
    例如:
    1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项
    -24ab与152ab是同类项 【同类项与字母前的系数大小无关】
    2. -7和29也是同类项【所有常数项都是同类项。】
    3. -a和a也是同类项【-a的系数是-1 a的系数是1 】
    4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】
    5.(3+k)与(3—k)是同类项。

  • 合并同类项:
    多项式中的同类项可以合并,叫做合并同类项。
    合并同类项步骤:
    (1)准确的找出同类项。
    (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
    (3)写出合并后的结果。
    在掌握合并同类项时注意:
    1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
    2.不要漏掉不能合并的项。
    3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
    合并同类项的关键:正确判断同类项。

    合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

    合并同类项的理论依据:
    其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。

    例1.合并同类项
    -8ab+6ab-3ab
    分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
    解答:原式=(-8+6-3)ab=-5 ab。
    例2.合并同类项
    -xy+3-2xy+5xy-4xy-7
    分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
    解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4
    例3.合并同类项并解答:
    2y-5y+y+4y-3y-2,其中y=1/2
    =(2+1-3)y+(-5+4)y-2
    =0+(-y)-2
    当y=1/2时,原式=(-1/2)-2
    =-5/2
    在合并同类项时,要注意是常数项也是同类项。