若a+b+c=0,且a>b>c,以下结论:①a>0,c>0;②关于x的方程ax+b+c=0的解为x=1;③a2=(b+c)2;④a|a|+b|b|+c|c|+abc|abc|的值为0或2;⑤在数轴上点A、B、C表示数a、b、c,若b<0,则-数学

首页 > 考试 > 数学 > 初中数学 > 数轴/2019-02-10 / 加入收藏 / 阅读 [打印]

题文

若a+b+c=0,且a>b>c,以下结论:
①a>0,c>0;
②关于x的方程ax+b+c=0的解为x=1;
③a2=(b+c)2
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
的值为0或2;
⑤在数轴上点A、B、C表示数a、b、c,若b<0,则线段AB与线段BC的大小关系是AB>BC.
其中正确的结论是______(填写正确结论的序号).
题型:填空题  难度:偏易

答案

∵a+b+c=0,且a>b>c,
∴a>0,c<0,∴①错误;
∵a+b+c=0,a>b>c,
∴a>0,a=-(b+c),
∵ax+b+c=0,
∴ax=-(b+c),
∴x=1,∴②正确;
∵a=-(b+c),
∴两边平方得:a2=(b+c)2,∴③正确;
∵a>0,c<0,
∴分为两种情况:
当b>0时,
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
=
a
a
+
b
b
+
c
-c
+
abc
-abc
=1+1+(-1)+(-1)=0;
当b<0时,
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
=
a
a
+
b
-b
+
c
-c
+
abc
abc
=1+(-1)+(-1)+1=0;
∴④错误;
∵a>c,
∴a-b>c-b,
∵a>b>c,
∴a-b>0,b-c>0,
∵|c-b|=|b-c|,
∴|a-b|>|c-b|,
∵AB=|a-b|,BC=|b-c|,
∴AB>BC,∴⑤正确;
即正确的结论有②③⑤,
故答案为:②③⑤.

据专家权威分析,试题“若a+b+c=0,且a>b>c,以下结论:①a>0,c>0;②关于x的方程ax+b+c=0..”主要考查你对  数轴,有理数加法,有理数的乘方,一元一次方程的解法,直线,线段,射线  等考点的理解。关于这些考点的“档案”如下:

数轴有理数加法有理数的乘方一元一次方程的解法直线,线段,射线

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐