当k=______时,方程(k2-1)x2-(2k+1)x+3k=0是关于x的一元一次方程;当k=______时,上述方程才是一元二次方程.-数学
题文
当k=______时,方程(k2-1)x2-(2k+1)x+3k=0是关于x的一元一次方程;当k=______时,上述方程才是一元二次方程. |
答案
∵方程(k2-1)x2-(2k+1)x+3k=0是关于x的一元一次方程, ∴
∵方程(k2-1)x2-(2k+1)x+3k=0是关于x的一元二次方程, ∴k2-1≠0,即k≠±1. 故答案为:±1;≠±1. |
据专家权威分析,试题“当k=______时,方程(k2-1)x2-(2k+1)x+3k=0是关于x的一元一次方程..”主要考查你对 一元一次方程的定义,一元二次方程的定义 等考点的理解。关于这些考点的“档案”如下:
一元一次方程的定义一元二次方程的定义
考点名称:一元一次方程的定义
- 定义:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的整式方程叫一元一次方程。
注:主要用于判断一个等式是不是一元一次方程。 一元一次方程标准形式:
只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。其中a是未知数的系数,b是常数,x是未知数。未知数一般设为x,y,z。
分类:
1、总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6
2、等式两边都含未知数。如:302x+400=400x,40x+20=60x.
方程特点:
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。一元一次方程判断方法:
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫 一元一次方程。
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
一元一次方程必须同时满足4个条件:
⑴它是等式;
⑵分母中不含有未知数;
⑶未知数最高次项为1;
⑷含未知数的项的系数不为0。
学习实践:
在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题。一元一次方程牵涉到许多的实际问题,例如工程问题、植树问题、比赛比分问题、行程问题、行船问题、相向问题分段收费问题、盈亏、利润问题。
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式—— 方程。
⒈4x=24
⒉1700+150x=2450
⒊0.52x-(1-0.52)x=80
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.
考点名称:一元二次方程的定义
- 定义:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 - 方程特点;
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是2。
判断方法:
要判断一个方程是否为一元二次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为(a≠0)的形式,则这个方程就为一元二次方程。 - 点拨:
①“a≠0”是一元二次方程的一般形式的重要组成部分,当a=0,b≠0时,她就成为一元一次方程了。反之,如果明确了是一元二次方程,就隐含了a≠0这个条件;
②任何一个一元二次方程, 经过整理都能化成一般形式,在判断一个方程是不是一元二次方程时,首先化成一般形式,再判断;
③二次项系数、一次项系数和常数项都是在一般形式下定义的,所以咋确定一元二次方程各项的系数时,应首先将方程化为一般形式;
④项的系数包括它前面的符号。如:x2+5x+3=0的一次项系数是5,而不是5x;3x2+4x-1=0的常数项是-1而不是1;
⑤若一元二次方程化为一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |