我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天我市气温t(℃)的取值范围是______.-数学
题文
我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天我市气温t(℃)的取值范围是______. |
答案
∵冬季某一天的最高气温为-1℃, ∴t≤-1; ∵最低气温为-6℃, ∴t≥-5, ∴-6≤t≤-1. 故答案为:-6≤t≤-1. |
据专家权威分析,试题“我市冬季某一天的最高气温为-1℃,最低气温为-6℃,那么这一天我市..”主要考查你对 不等式的定义 等考点的理解。关于这些考点的“档案”如下:
不等式的定义
考点名称:不等式的定义
- 不等式的定义:
一般地,用不等号表示不相等关系的式子叫做不等式,常见的不等号有“>”“<”“≤” “≥”及“≠”。
不等式组的定义:几个含有相同未知数的不等式联立起来,叫做不等式组。 - 不等式分类:
不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 - 不等式的判定:
①常见的不等号有“>”“<”“≤” “≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
②在不等式“a>b”或“a<b”中,a叫作不等式的左边,b叫作不等式的右边;
③不等号的开口所对的数较大,不等号的尖头所对的数较小;
④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:知识迁移当a>0且x>0时,因为(x-ax)2≥0,所以x-2a+ax≥0,从而x+ax≥2a(当x=a)是取等号).记函数y=x+ax(a>0,x>0).由上述结论可知:当x=a时,该函数有最小值为2a.直接应用已知函数-数学
下一篇:贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27B.18≤t<27C.18<t≤27D.18≤t≤27-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |