2011年3月10日,我国云南盈江县发生了5.8级的地震,在地震中某学校的课桌损坏严重,为了尽快的复课,该校有560张课桌急需维修,A工程队先维修一天,又请B工程队前来帮助,且-七年级数学

题文

2011年3月10日,我国云南盈江县发生了5.8级的地震,在地震中某学校的课桌损坏严重,为了尽快的复课,该校有560张课桌急需维修,A工程队先维修一天,又请B工程队前来帮助,且B队平均每天比A队多修24张课桌,按照这样的工作效率进行,A、B两队需合作6天才能维修完剩下的课桌.
小题1:求工程队A平均每天维修课桌的张数
小题2:A、B两队按计划合作施工2天,由于余震,学校又清理出需要维修的课桌198张,为了按时完成任务,学校又请来C工程队,A、C队的工作效率相同,且三个工程队决定从第3天开始,各自都提高工作效率,B队提高的工作效率是A、C队提高的2倍,这样他们至少还需要3天才能完成整个维修任务.求工程队A提高工作效率后平均每天多维修课桌的张数的取值范围.

题型:解答题  难度:偏易

答案


小题1:解:设A队平均每天修张课桌,B队平均每天修张课桌,
由题意可得:                     ……………………………………1分
,解得:            ………………3分
答:A队平均每天修32张课桌,B队平均每天修56张课桌.  ………………4分
小题2:解:设工程队A提高工作效率后平均每天多修张课桌,则工程队C提高工作效率后平均每天多修张课桌,工程队B提高工作效率后平均每天多修张课桌.……………5分
因A、B合作施工的第2天,则已修了课桌,从第3天起,还需维修的课桌为,              ………………6分
 ……………8分
解得:                             …………9分
因课桌的张数为正整数,即工程队A提高工作效率后平均每天多修课桌的张数的取值范围为                                  ………………10分

(1)关键正确分析A、B两个工程队的工作效率的关系,且不可忘记A已经先做一天,需认真审题;
(2).注意又增加C队,且C队的工作效率和A队相同,A、B、C三工程队决定从合作的第3天开始,且各自提高工作效率,B队提高的工作效率是A、C队的2倍,这样他们至少还需3天才能完成这个维修任务,必须先求出A、B合作施工已修了课桌的张数,从第3天起,还需要维修的课桌的张数,再根据题中的要求他们至少还需3天才能完成这个维修任务,根据题意列出不等式,
解得:                      
因课桌的张数为正整数,即工程队A提高工作效率后平均每天多修课桌的张数的取值范围为

据专家权威分析,试题“2011年3月10日,我国云南盈江县发生了5.8级的地震,在地震中某学..”主要考查你对  二元一次方程组的定义,二元一次方程的定义,二元一次方程组的解法,二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的定义二元一次方程的定义二元一次方程组的解法二元一次方程组的应用

考点名称:二元一次方程组的定义

  • 二元一次方程组:
    含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
    把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。
    二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。
    一般形式为:(其中a1,a2,b1,b2不同时为零).

  • 二元一次方程组的特点:
    1.组成二元一次方程组的两个一次方程不一定都是二元一次方程,但这两个方程必须一共含有两个未知数,如也是二元一次方程组。
    2.在方程组的每个方程中,相同字母必须代表同一未知量,否则不能将两个方程合在一起。
    3.二元一次方程组中的各个方程应是整式方程。
    4.二元一次方程组有时也由两个以上的方程组成。

  • 二元一次方程与二元一次方程组的区别:
    二元一次方程 二元一次方程组
    条件 ①含有两个未知数;
    ②含未知数的项的次数都是1;
    ③整式方程。
    ①含有两个未知数;
    ②含未知数的项的次数都是1;
    ③整式方程组(可任意话说你有两个以上的方程)
    一般形式 ax+by=c(a、b、c都是常数,且a≠0,b≠0)
    (a1,a2,b1,b2不同时为零).
    解的情况 无数组解 或无数组解或有唯一解或无解
    解的定义 适合二元一次方程的每一对未知数的值,叫做这个二元一次方程的一组解 二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解

  • 二元一次方程组的判定:
    ①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.
    ②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.

考点名称:二元一次方程的定义

  • 二元一次方程:
    如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
    二元一次方程的一般形式:ax+by+c=0其中a、b不为零。
    二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。

  • 二元一次方程的特点:
    1.在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数。
    2.未知数的项的次数是1,指的是含有未知数的项(单项式)的次数是1,如3xy的次数是2,所以方程3xy-2=0不是二元一次方程。
    3.二元一次方程的左边和右边都必须是整式,例如方程1/x-y=1的左边不是整式,所以她不是二元一次方程。

    二元一次方程的解的特点:
    1.二元一次方程的每个解都包括两个未知数的值,是一对数值,而不是一个数值,如x=7不是方程x+y=18的一个解,而才是方程x+y=18的一个解。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐