某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当-数学

题文

某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a元的奖励.另外,种植的果树,从下一年起,每年每棵平均将有b元的果实收入.下表是某农户在头两年通过开荒种树每年获得的总收入情况:
年份  新果树的棵树  年总收入 
 2004年 130棵  1500元 
 2005年 150棵  4300元 
(注:年总收入=生活补贴费+政府奖励费+果实收入)
(1)试根据以上提供的资料确定a、b的值;
(2)从2006年起,该农户每年新增果树的棵数将以相同的百分率增长,预计2007年新增果树216棵,那么2007年该农户通过种植果树获得的年总收入将达到多少元?
题型:解答题  难度:中档

答案

(1)根据题意得

1200+30a=1500
1200+50a+130b=4300

解得

a=10
b=20


(2)设该增长率为x,则06年新增果树棵树为150(1+x),07年新增的果树棵树为150(1+x)2
根据题意得150(1+x)2=216,
解x=0.2或x=-2.2(舍去),
∴06年新增果树为150×1.2=180棵,
07年的总收入是1200+116×10+(180+150+130)×20=11560元.
答:2007年该农户通过种植果树获得的年总收入将达到11560元.

据专家权威分析,试题“某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在..”主要考查你对  二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的应用

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐