下列说法中,错误的是[]A.是方程2x﹣3y=5的一个解B.方程可化为C.不是二元一次方程D.当a、b为已知数,且a≠0时,方程ax=b的解是-七年级数学
题文
下列说法中,错误的是 |
[ ] |
A.是方程2x﹣3y=5的一个解 B.方程可化为 C.不是二元一次方程 D.当a、b为已知数,且a≠0时,方程ax=b的解是 |
答案
B |
据专家权威分析,试题“下列说法中,错误的是[]A.是方程2x﹣3y=5的一个解B.方程可化为C.不..”主要考查你对 二元一次方程的解法,一元一次方程的解法,方程的解,二元一次方程的定义 等考点的理解。关于这些考点的“档案”如下:
二元一次方程的解法一元一次方程的解法方程的解二元一次方程的定义
考点名称:二元一次方程的解法
- 二元一次方程的解:
使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 二元一次方程解法:
二元一次方程有无数个解,除非题目中有特殊条件。
一、消元法
“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。
如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8
消元方法:
代入消元法(常用)
加减消元法(常用)
顺序消元法(这种方法不常用)
例:
x-y=3 ①
{
3x-8y=4②
由①得x=y+3③
③代入②得
3(y+3)-8y=4
y=1
所以x=4
则:这个二元一次方程组的解
x=4
{
y=1(一)加减-代入混合使用的方法.
例:
13x+14y=41 ①
{
14x+13y=40②
②-①得
x-y=-1
x=y-1 ③
把③代入①得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入③得
x=1
所以:x=1,y=2
最后 x=1 ,y=2, 解出来
特点:两方程相加减,得到单个x或单个y,适用接下来的代入消元。(二)代入法
是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中
如:
x+y=590
y+20=90%x
带入后就是:
x+90%x-20=590
(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式(x+5,y-4),换元后可简化方程。(三)另类换元
例:
x:y=1:4①
5x+6y=29②
令x=t,y=4t
方程2可写为:5t+24t=29
29t=29
t=1
所以x=1,y=4二、换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
如:
(x+y)/2-(x-y)/3=6
3(x+y)=4(x-y)
解:
设x+y为a,x-y为b
原=a/2-b/3=6①
3a=4b②
①×6 得3a-2b=36③
把②代入③ 得2b=36 b=18
把b=18代入②得a=24
所以x+y=24④
x-y=18⑤
④-⑤得 2y=6 y=3
把y=3代入④得 x=21
x=21,y=3
是方程组的解
整体代入
如:
2x+5y=15①
85-7y=2x②
解:把②代入①得
85-7y+5y=15
-2y=-70
y=35
把y=35代入②
得x=-80
x=-80,y=35
是方程组的解二元一次方程有两个正根的特点:
二元一次方程ax2+bx+c=0(a≠0)
有两个正跟要满足下列3个条件
1、保证有两个跟,即:△≥0,也就是b2-4ac≥0
2、x1+x2>0,即 —b/a>0
3、x1×x2>0,即c/a>0
然后根据所给的条件在求出题目中要求的某些字母的值
二元一次方程整数解存在的条件:
在整系数方程ax+by=c中,
若a,b的最大公约数能整除c,则方程有整数解。即
如果(a,b)|c 则方程ax+by=c有整数解
显然a,b互质时一定有整数解。
例如方程
3x+5y=1,
5x-2y=7,
9x+3y=6都有整数解。
返过来也成立,方程
9x+3y=10和
4x-2y=1都没有整数解,
∵(9,3)=3,而3不能整除10;
(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。
二元一次方程整数解的方法:
①首先用一个未知数表示另一个未知数,如y=10-2x;
②给定x一个值,求y的一个对应值,就可以得到二元一次方程的一组解;
③根据提议对未知数x、y做出限制,确定x的可能取值,确定二元一次方程所有的整数解。
考点名称:一元一次方程的解法
- 使方程左右两边相等的未知数的值叫做方程的解。
- 解一元一次方程的注意事项:
1、分母是小数时,根据分数的基本性质,把分母转化为整数;
2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
3、去括号时,不要漏乘括号内的项,不要弄错符号;
4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;
7、分、小数运算时不能嫌麻烦;
8、不要跳步,一步步仔细算 。 解一元一次方程的步骤:
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
依据:等式的性质2
⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)
依据:乘法分配律
⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)
依据:等式的性质1
⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;
依据:乘法分配律(逆用乘法分配律)
⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解
依据:等式的性质2方程的同解原理 :
如果两个方程的解相同,那么这两个方程叫做同解方程。
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:
⒈认真 审题(审题)
⒉分析已知和未知量
⒊找一个合适的 等量关系
⒋设一个恰当的未知数
⒌列出合理的方程 (列式)
⒍解出方程(解题)
⒎ 检验
⒏写出答案(作答)例:ax=b(a、b为常数)?
解:当a≠0,b=0时,
ax=0
x=0(此种情况与下一种一样)
当a≠0时,x=b/a。
当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)
当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)
例:
(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小 公倍数)得:
5(3x+1)-10×2=(3x-2)-2(2x+3)
去括号得:
15x+5-20=3x-2-4x-6
移项得:
15x-3x+4x=-2-6-5+20
合并同类项得:
16x=7
系数化为1得:
x=7/16。注:字母公式(等式的性质)
a=b a+c=b+c a-c=b-c (等式的性质1)
a=b ac=bc
a=bc(c≠0)= a÷c=b÷c(等式的性质2)
检验 算出后需检验的。
求根公式
由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。
但对于标准形式下的一元一次方程 ax+b=0
可得出求根公式x=-(b/a)
考点名称:方程的解
- 方程的解:
是指所有未知数的总称,方程的根是指一元方程的解,两者通常可以通用。
1、方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解。
2、解方程:求方程解的过程。
3、方程的解与解方程不同:方程的解是未知数的值,而解方程指的是一个过程,两者是不同的。
考点名称:二元一次方程的定义
- 二元一次方程:
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
二元一次方程的一般形式:ax+by+c=0其中a、b不为零。
二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解 。 - 二元一次方程的特点:
1.在方程中“元”是指未知数,“二元”是指方程中有且只有两个未知数。
2.未知数的项的次数是1,指的是含有未知数的项(单项式)的次数是1,如3xy的次数是2,所以方程3xy-2=0不是二元一次方程。
3.二元一次方程的左边和右边都必须是整式,例如方程1/x-y=1的左边不是整式,所以她不是二元一次方程。
二元一次方程的解的特点:
1.二元一次方程的每个解都包括两个未知数的值,是一对数值,而不是一个数值,如x=7不是方程x+y=18的一个解,而才是方程x+y=18的一个解。
2.二元一次方程的解是具有相关性的一对未知数的值,二者相互制约,相互对应,不独立存在,当其中一个未知数的值确定以后,另一个未知数的值也确定了。
3.一般情况下,一个二元一次方程有无数个解,如方程x+y=18的解还可以是等等。 - 二元一次方程的判定标准:
1.二元:有两个未知数
2.一次:未知数的系数为1
3.整式方程:分母不含未知数
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |