若a<0,b>0且︱a︱<︱b︱,则a-b=[]A.︱a︱-︱b︱B.︱b︱-︱a︱C.-︱a︱-︱b︱D.︱a︱+︱b︱-七年级数学

题文

若a<0,b>0且︱a︱<︱b︱,则a-b=(   )
A.︱a︱-︱b︱  
B.︱b︱-︱a︱    
C.-︱a︱-︱b︱  
D.︱a︱+︱b︱
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“若a<0,b>0且︱a︱<︱b︱,则a-b=[]A.︱a︱-︱b︱B.︱b︱-︱a︱C..”主要考查你对  不等式的比较大小,绝对值  等考点的理解。关于这些考点的“档案”如下:

不等式的比较大小绝对值

考点名称:不等式的比较大小

  • 主要是运用不等式的基本性质及均值不等式进行比较大小。

  • 方法:
    ①求差比较法的基本步骤是:“作差——变形——断号”。
    其中,作差是依据,变形是手段,判断符号才是目的。

    变形的目的全在于判断差的符号,而不必考虑差值是多少:
    变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式。或者变形为一个分式,或者变形为几个因式的积的形式等。总之,能够判断出差的符号是正或负即可。

    ②作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明。

考点名称:绝对值

  • 绝对值定义:
    在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
    绝对值用“||”来表示。
    在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。

  • 绝对值的意义:
    1、几何的意义:
    在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。

    2、代数的意义:
    非负数(正数和0,)
    非负数的绝对值是它本身,非正数的绝对值是它的相反数。
    互为相反数的两个数的绝对值相等。
    a的绝对值用“|a |”表示.读作“a的绝对值”。
    实数a的绝对值永远是非负数,即|a |≥0。
    互为相反数的两个数的绝对值相等,即|-a|=|a|。
    若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.

  • 绝对值的有关性质:
    ①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
    ②绝对值等于0的数只有一个,就是0;
    ③绝对值等于同一个正数的数有两个,这两个数互为相反数;
    ④互为相反数的两个数的绝对值相等。

    绝对值的化简:
    绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
    ①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
    │a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
    ②整数就找到这两个数的相同因数;
    ③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
    ④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐