“溱潼会船节”开幕式这天,某停车场预计停放的大小汽车共1200辆,该停车场的收费标准为:大车每车次10元,小车每车次为5元,根据预计,解答下列问题:(1)写出开幕式这天停车场的-数学
题文
“溱潼会船节”开幕式这天,某停车场预计停放的大小汽车共1200辆,该停车场的收费标准为:大车每车次10元,小车每车次为5元,根据预计,解答下列问题: (1)写出开幕式这天停车场的收费金额y(元)与小车停放数x(辆)之间的函数关系式,并指出自变量x的收费范围. (2)如果开幕式这天停放的小车辆占停车总车辆的65%至85%,请你估计开幕式这天该停车场收费金额的范围. (3)如果停车场预计收费总额不少于10000元,则至多停放多少辆小车? |
答案
(1)若小车停放数为x(辆), 则停车场收费金额 y=5x+10×=12000-5x, 且自变量0≤x≤1200; (2)由(1)式知 停车场收费金额 y=12000-5x(0≤x≤1200), ①若停放的小车辆占停车总车辆的65%时,x=780,此时y=8100, ②若停放的小车辆占停车总车辆的85%时,x=1020,此时y=6900, 又因为 y=12000-5x为一次函数,并且y随着x的增大而减小(根据一次函数的性质), 所以6900元≤y≤8100元; (3)如果停车场预计收费总额不少于10000元,则y≥10000, 即12000-5x≥10000, 解得x≤400, 所以至多停放400辆. 答:(1)开幕式这天停车场的收费金额y(元)与小车停放数x(辆)之间的函数关系式是y=12000-5x(0≤x≤1200); (2)如果开幕式这天停放的小车辆占停车总车辆的65%至85%,收费金额的范围是6900元≤y≤8100元; (3)如果停车场预计收费总额不少于10000元,则至多停放400辆小车. |
据专家权威分析,试题““溱潼会船节”开幕式这天,某停车场预计停放的大小汽车共1200辆,..”主要考查你对 一元一次不等式的应用,一次函数与一元一次不等式(一元一次方程) 等考点的理解。关于这些考点的“档案”如下:
一元一次不等式的应用一次函数与一元一次不等式(一元一次方程)
考点名称:一元一次不等式的应用
- 一元一次不等式的应用包括两个方面:
1、通过一元一次不等式求字母的取值范围;
2、列一元一次不等式解实际应用题。 - 列不等式解应用题的一般步骤:
(1)审题;
(2)设未知数;
(3)确定包含未知数的不等量关系;
(4)列出不等式;
(5)求出不等式的解集,检验不等式的解是否符合题意;
(6)写出答案。
考点名称:一次函数与一元一次不等式(一元一次方程)
一次函数和方程关系:
一次函数 一元一次方程 形式 y=kx+b ax+b=0 内容 表示的是一对(x,y)之间的关系,
它有无数对解表示的是未知数x的值,
最多只有1个值相互关系 一次函数与x轴交点的横坐标就是相应的一元一次方程的根
例如:
y=4x+8与x轴的交点是(-2,0),
则一元一次方程4x+8=0的根是x=-2。
函数和不等式:
解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。
当k>0时,不等式kx+b>0的解为:x>- b/k,不等式kx+b<0的解为:x<- b/k;
当k<0的解为:不等式kx+b>0的解为:x<- b/k,不等式kx+b<0的解为:x>- b/k。- 一元一次不等式与一元一次方程、一次函数的关系:
1.一元一次不等式ax+b>0(a≠0)是一次函数y=ax+b(a≠0)的函数值>0的情形;
一元一次不等式ax+b<0(a≠0)是一次函数y=ax+b(a≠0)的函数值<0的情形。
2.直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;
使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集。
3.一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值=0的情形;
反之,使函数值y=0的x的取值就是方程ax+b=0(a≠0)的解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |