下列各曲线中,不能表示y是x函数的为()A.B.C.D.-数学
题文
下列各曲线中,不能表示y是x函数的为( )
|
题文
下列各曲线中,不能表示y是x函数的为( )
|
题型:单选题 难度:偏易
答案
A、y与x是一一对应的,是函数关系,正确; B、给x一个值,有两个y值与之对应,不是函数关系,错误; C、y与x是一一对应的,是函数关系,正确; D、y与x是一一对应的,是函数关系,正确. 故选B. |
据专家权威分析,试题“下列各曲线中,不能表示y是x函数的为()A.B.C.D.-数学-”主要考查你对 函数的定义,函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的定义函数的图像
考点名称:函数的定义
理解函数的概念应扣住下面三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有惟一确定的值”;
(2)判断两个变量是否有函数关系不仅看它们之间是否有关系式存在,更重要地是看对于x的每一个确定的值。y是否有惟一确定的值和它对应;(3)函数不是数,它是指某一变化过程中两个变量之间的关系。
函数的表示方法:
(1)解析法:两个变量之间的关系有时可以用含有这两个变量及数学运算符号的等式来表示,这种表示方法叫做解析法.
(2)列表法:把自变量x的一系列值和函数y的对应值列成一个表格来表示函数关系,这种表示方法叫做列表法.
(3)图象法:用图象表示函数关系的方法叫做图象法.
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.
函数图象上的点的坐标与其解析式之间的关系:
①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |