如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数的图象相交于C、D两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DE-九年级数学
题文
如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函数的图象相交于C、D两点,分别过C、D两点作y轴,x轴的垂线,垂足为E、F,连接CF、DE,有下列结论:①△CEF与△DEF的面积相等;②EF∥CD;③△DCE≌△CDF;④AC=BD;⑤△CEF的面积等于,其中正确的个数有( ) A、2 B、3 C、4 D、5 |
答案
C |
分析:此题要根据反比例函数的性质进行求解,解决此题的关键是要证出CD∥EF,可从①问的面积相等入手;△DFE中,以DF为底,OF为高,可得S△DFE=|xD|?|yD|=k,同理可求得△CEF的面积也是 k,因此两者的面积相等;若两个三角形都以EF为底,那么它们的高相同,即E、F到AD的距离相等,由此可证得CD∥EF,然后根据这个条件来逐一判断各选项的正误. 解答:解:设点D的坐标为(x,kx),则F(x,0). 由函数的图象可知:x>0,k>0. ∴S△DFE=DF?OF=|xD|?||=k, 同理可得S△CEF=k,故⑤正确; 故S△DEF=S△CEF.故①正确; 若两个三角形以EF为底,则EF边上的高相等,故CD∥EF.故②正确; ③条件不足,无法得到判定两三角形全等的条件,故③错误; ④法一:∵CD∥EF,DF∥BE, ∴四边形DBEF是平行四边形, ∴S△DEF=S△BED, 同理可得S△ACF=S△ECF; 由①得:S△DBE=S△ACF. 又∵CD∥EF,BD、AC边上的高相等, ∴BD=AC,故④正确; 法2:∵四边形ACEF,四边形BDEF都是平行四边形, 而且EF是公共边, 即AC=EF=BD, ∴BD=AC,故④正确; 因此正确的结论有4个:①②④⑤. 故选C. |
据专家权威分析,试题“如图,一次函数y=ax+b的图象与x轴、y轴交于A、B两点,与反比例函..”主要考查你对 函数的定义,变量及函数,常量与变量,函数值 等考点的理解。关于这些考点的“档案”如下:
函数的定义变量及函数常量与变量函数值
考点名称:函数的定义
- 函数的定义:
一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
对函数概念的理解,主要抓住以下三点:
①有两个变量;
②一个变量的每一个数值随着另一个变量的数值的变化而变化;
③对于自变量每一个确定的值,函数有且只有一个值与之对应。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是1。 理解函数的概念应扣住下面三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有惟一确定的值”;
(2)判断两个变量是否有函数关系不仅看它们之间是否有关系式存在,更重要地是看对于x的每一个确定的值。y是否有惟一确定的值和它对应;(3)函数不是数,它是指某一变化过程中两个变量之间的关系。函数的表示方法:
(1)解析法:两个变量之间的关系有时可以用含有这两个变量及数学运算符号的等式来表示,这种表示方法叫做解析法.
(2)列表法:把自变量x的一系列值和函数y的对应值列成一个表格来表示函数关系,这种表示方法叫做列表法.
(3)图象法:用图象表示函数关系的方法叫做图象法.- 函数的判定:
①判断两个变量是否有函数关系,不仅看他们之间是否有关系式存在,更重要的是看对于x的每个确定的值,y是否有唯一确定的值和他对应。
②函数不是数,他是指某一变化过程中两个变量之间的关系。
考点名称:变量及函数
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。- 变量的关系:
在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。 - 函数自变量的取值范围的确定:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
自变量的取值范围的确定方法:
首先要考虑自变量的取值必须使解析式有意义,
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
考点名称:常量与变量
- 基本定义:
变量:在某一变化过程中,数值发生变化的量。
常量:在某一变化过程中,数值始终不变的量。
变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的“身份”是可以相互转换的。 常量与变量的判定:
变量:就是没有固定值,只是用字母表示,可以随意给定值的量。
常量:就是有固定值得量(可以是字母也可以是数字)
例如:
1. y=-2x+4 y,x都没有固定值,是变量;4是固定的,所以是常量。
2. n边形的对角线条数l与边数n的关系:l=n(n-3)/2 同上理由,n是变量;1,2,3是常量
3.圆的周长公式:C=2πR 因为π是个固定的数字(3.1415926535...)只不过是用字母表示,所以是常量,2也是常量;R和C没有确定值,都是变量。判断一个量是常量还是变量,需看两个方面:
在事物的变化过程中,我们称数值发生变化的量为变量,而数值始终保持不变的量称为常量。常量与变量必须存在于一个变化过程中。
①看它是否在一个变化的过程中;
②看它在这个变化过程中的取值情况。
自变量的取值范围有无限的,也有有限的,还有的是单独一个(或几个)数的;
在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分。
考点名称:函数值
- 定义:
函数的值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值。如当x=a时,函数有唯一确定的对应值,这个值就是当x=a时的函数值。 - 函数值的性质:
①当函数式是由一个解析式表示时,欲求函数值,实质就是求代数式的值;
②当一只函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程;
③当给定函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式;
④当自变量确定时,函数值时唯一确定的,但当函数值唯一确定时,对应的自变量可以是多个,如y=x2-1,当x=3时,x=±2。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |