国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费报销规定,享受医保的农民可在-七年级数学

首页 > 考试 > 数学 > 初中数学 > 变量及函数/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费报销规定,享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下表:
(1)设某农民一年的实际医疗费为x元(500<x≦10000),按标准报销的金额为y元,试求y与x的函数关系式;
(2)若某农民一年内自付医疗费为2600元,(自付医疗费=实际医疗费﹣按标准报销的金额),则该农民当年实际医疗费为多少元?
(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际医疗费至少为多少元?
题型:解答题  难度:中档

答案

解:(1)根据题意得 y=(x﹣500)×70%=0.7x﹣350.(500<x<10000);
(2)设实际医疗费为x元,
根据题意得 2600=x﹣y=x﹣(0.7x﹣350)=0.3x+350.
解得x=7500.
答:若自付医疗费2600元,则实际医疗费为7500元;
(3)设实际医疗费为x元,
根据题意得 4100≦x﹣(10000﹣500)×70%﹣(x﹣10000)×80%.
解得x≥13750.
答:若自付医疗费4100元,则实际医疗费至少为13750元.

据专家权威分析,试题“国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推..”主要考查你对  变量及函数,一元一次方程的应用,一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

变量及函数一元一次方程的应用一元一次不等式的应用

考点名称:变量及函数

  • 函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
    如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
    变量:
    在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
    自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
    因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

  • 变量的关系:
    在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
    进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
    自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。

  • 函数自变量的取值范围的确定:
    使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
    自变量的取值范围的确定方法:
    首先要考虑自变量的取值必须使解析式有意义,
    ①当解析式为整式时,自变量的取值范围是全体实数;
    ②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
    ③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
    ④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。

考点名称:一元一次方程的应用

  • 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;
    同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

  • 列一元一次方程解应用题的一般步骤:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是: 
    ⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。  
    ⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;
    ①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;
    ②间接未知数(往往二者兼用)。
    一般来说,未知数越多,方程越易列,但越难解。  
    ⑶用含未知数的代数式表示相关的量。  
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。  
    ⑸解方程及检验。  
    ⑹答题。  
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  • 一元一次方程应用题型及技巧:
    列方程解应用题的几种常见类型及解题技巧:
    (1)和差倍分问题:
    ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
    ②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
    ③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

    (2)行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:
    顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度
    例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
    慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
    两车同时开出,相背而行多少小时后两车相距600公里?
    两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
    两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
    慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)
    例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

    (3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。
    例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

    (4)工程问题:
    三个基本量:工作量、工作时间、工作效率;
    其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。
    例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

    (5)利润问题:
    基本关系:
    ①商品利润=商品售价-商品进价;
    ②商品利润率=商品利润/商品进价×100%;
    ③商品销售额=商品销售价×商品销售量;
    ④商品的销售利润=(销售价-成本价)×销售量。
    ⑤商品售价=商品标价×折扣率例.
    例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

    (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
    数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;
    偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
    例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

    (7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。

    (8)储蓄问题:
    其数量关系是:
    利息=本金×利率×存期;:(注意:利息税)。
    本息=本金+利息,利息税=利息×利息税率。
    注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 

    (9)溶液配制问题:
    其基本数量关系是:溶液质量=溶质质量+溶剂质量;
    溶质质量=溶液中所含溶质的质量分数。
    这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。 

    (10)比例分配问题: 
    这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
    常用等量关系:各部分之和=总量。 
    还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。