父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.根据下表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是-七年级数学

首页 > 考试 > 数学 > 初中数学 > 变量及函数/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.
根据下表,父亲还给小明出了下面几个问题,你和小明一起回答.
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?
(3)你知道距离地面5千米的高空温度是多少吗?
(4)你能猜出距离地面6千米的高空温度是多少吗?
题型:解答题  难度:中档

答案

解:(1)上表反映了温度和距地面高度之间的关系,高度是自变量,温度是函数.
(2)由表可知,每上升一千米,温度降低6摄氏度,可得解析式为y=20﹣6x;
(3)由表可知,距地面5千米时,温度为零下10摄氏度;
(4)将x=6代入y=20﹣6x可得,y=20﹣6×6=﹣16.

据专家权威分析,试题“父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表..”主要考查你对  变量及函数,常量与变量,求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

变量及函数常量与变量求一次函数的解析式及一次函数的应用

考点名称:变量及函数

  • 函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
    如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
    变量:
    在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
    自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
    因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

  • 变量的关系:
    在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
    进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
    自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。

  • 函数自变量的取值范围的确定:
    使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
    自变量的取值范围的确定方法:
    首先要考虑自变量的取值必须使解析式有意义,
    ①当解析式为整式时,自变量的取值范围是全体实数;
    ②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
    ③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
    ④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。

考点名称:常量与变量

  • 基本定义:
    变量:在某一变化过程中,数值发生变化的量。
    常量:在某一变化过程中,数值始终不变的量。
    变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的“身份”是可以相互转换的。

  • 常量与变量的判定:
    变量:就是没有固定值,只是用字母表示,可以随意给定值的量。
    常量:就是有固定值得量(可以是字母也可以是数字)
    例如:
    1. y=-2x+4 y,x都没有固定值,是变量;4是固定的,所以是常量。
    2. n边形的对角线条数l与边数n的关系:l=n(n-3)/2 同上理由,n是变量;1,2,3是常量
    3.圆的周长公式:C=2πR 因为π是个固定的数字(3.1415926535...)只不过是用字母表示,所以是常量,2也是常量;R和C没有确定值,都是变量。

    判断一个量是常量还是变量,需看两个方面:
    在事物的变化过程中,我们称数值发生变化的量为变量,而数值始终保持不变的量称为常量。常量与变量必须存在于一个变化过程中。
    ①看它是否在一个变化的过程中;
    ②看它在这个变化过程中的取值情况。
    自变量的取值范围有无限的,也有有限的,还有的是单独一个(或几个)数的;
    在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐