甲、乙、丙三人同时从A村出发去B村,刚开始甲骑自行车载乙,丙步行;a小时后甲骑车中途回头接丙,乙步行,结果三人同时到达B地。假设:乙、丙步行速度相同,甲载乙与甲载丙时-九年级数学
题文
甲、乙、丙三人同时从A村出发去B村,刚开始甲骑自行车载乙,丙步行;a小时后甲骑车中途回头接丙,乙步行,结果三人同时到达B地。假设:乙、丙步行速度相同,甲载乙与甲载丙时速度相同,甲载人与不载人时的速度不同,甲、乙、丙三人与A村之间的距离y(千米)与出发的时间x(小时)之间的函数关系如图。(掉头与上下车时间忽略不计) (1)选择:甲与A村之间的距离y (千米)与出发时间x (小时)之间的函数图像为折线( ), A.O-M-P B.O-N-P C.O-M-N-P D.O-N-M-P 乙与A村之间的距离y (千米)与出发时间x (小时)之间的函数图像为折线( ), A.O-M-P B.O-N-P C.O-M-N-P D.O-N-M-P 丙与A村之间的距离y (千米)与出发时间x (小时)之间的函数图像为折线( )。 A.O-M-P B.O-N-P C.O-M-N-P D.O-N-M-P (2)求步行速度,和甲载人骑车时的速度。 (3)求a的值以及甲骑车走过的总路程。(写出必要的演算和推理过程) |
答案
(1)C;A;B; (2)3千米/小时 12千米/小时 ; (3) 总路程10.5千米。 |
据专家权威分析,试题“甲、乙、丙三人同时从A村出发去B村,刚开始甲骑自行车载乙,丙步..”主要考查你对 函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的图像
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.- 由函数解析式画其图象的一般步骤:
①列表:列表给出自变量与函数的一些对应值;
②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.
函数图象上的点的坐标与其解析式之间的关系:
①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |