如图1,在直角梯形ABCD中,AB∥CD,∠ABC=90°,点P从B点出发,沿BC、CD匀速运动至D停止,设点P运动的路程为x,△ABP的面积为y,y与x之间的函数图象如图2所示,则△BCD的面积是__-数学
题文
如图1,在直角梯形ABCD中,AB∥CD,∠ABC=90°,点P从B点出发,沿BC、CD匀速运动至D停止,设点P运动的路程为x,△ABP的面积为y,y与x之间的函数图象如图2所示,则△BCD的面积是______. |
题文
如图1,在直角梯形ABCD中,AB∥CD,∠ABC=90°,点P从B点出发,沿BC、CD匀速运动至D停止,设点P运动的路程为x,△ABP的面积为y,y与x之间的函数图象如图2所示,则△BCD的面积是______. |
题型:填空题 难度:中档
答案
动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在AB段随x的增大而增大; 在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是
故答案为3. |
据专家权威分析,试题“如图1,在直角梯形ABCD中,AB∥CD,∠ABC=90°,点P从B点出发,沿BC..”主要考查你对 函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的图像
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.
函数图象上的点的坐标与其解析式之间的关系:
①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |