在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为(  )
A.B.C.D.

题型:单选题  难度:中档

答案

∵四边形ABCD是正方形,
∴AC=BD=2

2
,OB=OD=
1
2
BD=

2

①当P在OB上时,即0≤x≤

2

∵EF∥AC,
∴△BEF∽△BAC,
∴EF:AC=BP:OB,
∴EF=2BP=2x,
∴y=
1
2
EF?BP=
1
2
×2x×x=x2
②当x在OD上时,即

2
<x≤2

2

∵EF∥AC,
∴△DEF∽△DAC,
∴EF:AC=DP:OD,
即EF:2

2
=(2

2
-x):

2

∴EF=2(2

2
-x),
∴y=
1
2
EF?BP=
1
2
×2(2

2
-x)×x=-x2+

2
x,
这是一个二次函数,根据二次函数的性质可知:
二次函数的图象是一条抛物线,开口方向决定,二次项的系数.
当系数>0时,抛物线开口向上;系数<0时,开口向下.所以由此图我们会发现,EF的取值,最大是AC.当在AC的左边时,EF=2BP;所以此抛物线开口向上,当在AC的右边时,抛物线就开口向下了.故选C.

据专家权威分析,试题“在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐