甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距离A地18km的B地,他们离出发地的距离S(km)和行驶时间t(h)之间的函数关系的图象如图所示.根据图中提供的信息,符合图象-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距离A地18km的B地,他们离出发地的距离S(km)和行驶时间t(h)之间的函数关系的图象如图所示.根据图中提供的信息,符合图象描述的说法是(  )
A.甲在行驶的过程中休息了一会
B.乙在行驶的过程中没有追上甲
C.乙比甲先到了B地
D.甲的行驶速度比乙的行驶速度大

题型:单选题  难度:中档

答案

A、由图象可知,甲是一条直线,并未中途停顿;故本选项错误;
B、由于甲与乙所表示的S与t之间的函数关系的图象由交点,且交点的横坐标小于2,所以乙在行驶过程中追上了甲,故本选项说法错误;
C、由于S=18时,t甲=2.5,t乙=2,所以乙比甲先到达B地,故本选项说法正确;
D、根据速度=路程÷时间,可知甲的行驶速度为18÷2.5=7.2千米/时,乙的行驶速度为18÷1.5=12千米/时,所以甲的行驶速度比乙的行驶速度小,故本选项错误.
故选C.

据专家权威分析,试题“甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距离A地18km..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐