一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12点同时出发,相遇后快车继续行驶,中午12点到达丙地,两车之间的距离为y(km),图中的折线表示两车之间的距离y(km)与时间x(时)之间的关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为______km;
(2)两车之间的最大距离是多少?是在什么时候?
(3)从一开始两车相距900km到两车再次相距900km,共用了多长时间?
(4)你能不能再找到一个实际情况,大致符合上图所刻画的关系?(去掉数字和单位)
题型:解答题  难度:中档

答案

(1)甲乙两地相距900km;

(2)相遇后快车继续行驶,两车之间的距离越来越大,由D点坐标可确定两车之间的最大距离为1200km,时间是中午12点;

(3)由于点A、点C对应的两车间的距离都是900km,从一开始两车相距900km到在此相距900km,共用了8小时;

(4)比如一辆汽车刹车时逐渐停止,然后又开始行驶.

据专家权威分析,试题“一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车在凌晨12..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐