(创新题)老师在一直角坐标系中画了一个反比例函数的图象和正比例函y=-x的图象,请同学们观察有什么特点,并说出来.同学甲:与直线y=-x有两个交点;同学乙:图象上任意一点到两-数学
题文
(创新题)老师在一直角坐标系中画了一个反比例函数的图象和正比例函y=-x的图象,请同学们观察有什么特点,并说出来.同学甲:与直线y=-x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请你根据同学甲和乙的说法写出反比例函数表达式:______. |
答案
正比例函y=-x的图象在第二、四象限和过原点,与反比例函数的图象的交点也必在二、四象限, 所以反比例函数的k<0, 反比例函数图象上任意一点到两坐标轴的距离的积都为5. 则|k|=5,∴k=-5, 反比例函数表达式:y=-
|
据专家权威分析,试题“(创新题)老师在一直角坐标系中画了一个反比例函数的图象和正比例..”主要考查你对 正比例函数的定义,求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
正比例函数的定义求反比例函数的解析式及反比例函数的应用
考点名称:正比例函数的定义
- 正比例函数定义:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
正比例函数的关系式表示为:y=kx(k为比例系数)
当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。 正比例函数性质:
定义域
R(实数集)
值域
R(实数集)
奇偶性
奇函数
单调性
当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。
周期性
不是周期函数。
对称性
对称点:关于原点成中心对称
对称轴:自身所在直线;自身所在直线的垂直平分线
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |