已知:直角梯形ABCD中,DC⊥BC,AD∥BC,AD=AB=5,BC=8.动点P以1个单位/秒的速度从C开始,沿C—D—A方向运动,到达点A时停止.(1)设△BCP的面积为y,运动的时间为t秒.求y关于t的-八年级数学

首页 > 考试 > 数学 > 初中数学 > 一次函数的定义/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

已知:直角梯形ABCD中,DC⊥BC,AD∥BC,AD=AB=5,BC=8.动点P以1个单位/秒的速度从C开始,沿C—D—A方向运动,到达点A时停止.
(1)设△BCP的面积为y,运动的时间为t秒. 求y关于t的函数关系式,并写出t的范围;

(2)连接AP,当点P在CD上时,求在第几秒时,△ABP的面积与△BCP的面积相等?

(3)若在点P从点C出发的同时,另一动点M从A开始沿着A—D—C方向运动,运动速度为2个单位/秒. 求当P、M相遇时,△BCP的面积?

题型:解答题  难度:中档

答案

(1)(2)(3)12

解:(1)△BCP的面积y与运动时间t的关系:

(2)△ABP的面积为: (0≤t≤4)
由于△ABP的面积=△BCP的面积,
得: ,解得:,满足0≤t≤4;
答:在第秒时,△ABP的面积等于△BCP的面积为
(3)设点M与点P的相遇时间为t ,由图形知:
,解得:
代入中,得:
三角形BCP的面积y=12,
答:当P、M相遇时,△BCP的面积是12.
此题主要考查了学生对梯形性质及面积的掌握和对运动中问题的解决能力.

据专家权威分析,试题“已知:直角梯形ABCD中,DC⊥BC,AD∥BC,AD=AB=5,BC=8.动点P以1个..”主要考查你对  一次函数的定义,正比例函数的定义,正比例函数的图像  等考点的理解。关于这些考点的“档案”如下:

一次函数的定义正比例函数的定义正比例函数的图像

考点名称:一次函数的定义

  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

考点名称:正比例函数的定义

  • 正比例函数定义:
    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
    正比例函数属于一次函数,但一次函数却不一定是正比例函数。
    正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
    正比例函数的关系式表示为:y=kx(k为比例系数)
    当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
    当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。

  • 正比例函数性质:
    定义域
    R(实数集)

    值域
    R(实数集)

    奇偶性
    奇函数

    单调性
    当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
    当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

    周期性
    不是周期函数。

    对称性
    对称点:关于原点成中心对称
    对称轴:自身所在直线;自身所在直线的垂直平分线

考点名称:正比例函数的图像

  • 图象:一条经过原点的直线。
    性质:
    (1)当k>0时,y随x的增大而增大;
    (2)当k<0时,y随x的增大而减小。
    1、在x允许的范围内取一个值,根据解析式求出y的值;
    2、根据第一步求的x、y的值描出点;
    3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

  • <?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" />正比例函数的图像:
     <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐