某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增-数学
题文
某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案: 方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款). 方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元) (1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式; (2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢? (3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法. |
答案
(1)①当2≤x≤8时,每平方米的售价应为:2000-(8-x)×20=20x+1840(元/平方米). ②当9≤x≤23时,每平方米的售价应为:2000+(x-8)?40=40x+1680(元/平方米). ∴y=
(2)由(1)知: ①当2≤x≤8时,王老师首付款为(20x+1840)?80?30%=24(20x+1840), ∵24(20?8+1840)=48000元<60000元, ∴2~8层可任选; ②当9≤x≤23时,王老师首付款为(40x+1680)?80?30%=24(40x+1680)元. 24(40x+1680)≤60000, 解得:x≤20.5. ∵x为正整数, ∴9≤x≤20, 综上得:王老师用方案一可以购买二至二十层的任何一层; (3)若按方案二购买第十六层,则王老师要实交房款为: y1=(40?16+1680)?80?92%-60a(元) 若按王老师的想法则要交房款为:y2=(40?16+1680)?80?91%(元). ∵y1-y2=1856-60a, ∴当y1>y2,即y1-y2>0时, 解得0<a<
此时王老师想法正确; 当y1≤y2,即y1-y2≤0时, 解得a≥
|
据专家权威分析,试题“某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |