如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,3),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-3x+b交线段OA于点E.(1)直接写出矩形OABC的面积(用含a的代数式-数学

题文

如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,

3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-

3
x+b交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.
题型:解答题  难度:中档

答案

(1)∵A、C的坐标分别是(a,0),(0,

3
),
∴OA=

3
,OA=a,
则矩形OABC的面积是

3
a;
(2)①直线l将矩形OABC分成周长相等的两部分,
∴CD+OE=DB+EA,
D(
b-

3

3

3
),E(
b

3
,0),
2b-

3

3
=6-
2b-

3

3
,b=2

3

②D(1,

3
)、E(2,0),
连接BE,

tan∠BEA=tan∠DEO=

3

DEO=60°
∴∠BEA=∠BED,
∵⊙P与AB、AE、ED都相切,
∴圆心P必在BE上,
过P作PF⊥OA,垂足为F,
∴△EPF∽△EBA,
PF
BA
=
EF
EA

设⊙P的半径为r,
r

3
=
1-r
1

∴r=
3-

3
2

(3)由题意知,DM∥NE,DN∥ME,
∴四边形DNEM为平行四边形,
根据轴对称知,∠MED=∠NED,
又∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四边形DNEM为菱形.
当N与O重合时,CD=1,
当M与B重合时,CD=3,
∴当1≤k≤3时重叠部分的面积为定值.
过点D作DH⊥OA,垂足为H,
由题意知,tan∠DEN=

3
,DH=

3

∴HE=1,
设菱形DNEM的边长为a,
则在Rt△DHN中,由勾股定理知,
a2=(a-1)2+(

3
2
a=2,
∴S四边形DNEM=NE?DH=2

3

∴该定值为2

3

据专家权威分析,试题“如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,3),点D是线..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐