如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,3),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-3x+b交线段OA于点E.(1)直接写出矩形OABC的面积(用含a的代数式-数学
题文
如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
(1)直接写出矩形OABC的面积(用含a的代数式表示); (2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时 ①求b的值; ②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径. (3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值. |
答案
(1)∵A、C的坐标分别是(a,0),(0,
∴OA=
则矩形OABC的面积是
(2)①直线l将矩形OABC分成周长相等的两部分, ∴CD+OE=DB+EA, D(
∴
②D(1,
连接BE, tan∠BEA=tan∠DEO=
DEO=60° ∴∠BEA=∠BED, ∵⊙P与AB、AE、ED都相切, ∴圆心P必在BE上, 过P作PF⊥OA,垂足为F, ∴△EPF∽△EBA, ∴
设⊙P的半径为r,
∴r=
(3)由题意知,DM∥NE,DN∥ME, ∴四边形DNEM为平行四边形, 根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED, ∴∠MED=∠MDE, ∴MD=ME, ∴平行四边形DNEM为菱形. 当N与O重合时,CD=1, 当M与B重合时,CD=3, ∴当1≤k≤3时重叠部分的面积为定值. 过点D作DH⊥OA,垂足为H, 由题意知,tan∠DEN=
∴HE=1, 设菱形DNEM的边长为a, 则在Rt△DHN中,由勾股定理知, a2=(a-1)2+(
a=2, ∴S四边形DNEM=NE?DH=2
∴该定值为2
|
据专家权威分析,试题“如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,3),点D是线..”主要考查你对 求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
(1)有图像的,注意坐标轴表示的实际意义及单位;
(2)注意自变量的取值范围。 用待定系数法求一次函数解析式的四个步骤:
第一步(设):设出函数的一般形式。(称一次函数通式)
第二步(代):代入解析式得出方程或方程组。
第三步(求):通过列方程或方程组求出待定系数k,b的值。
第四步(写):写出该函数的解析式。
一次函数的应用涉及问题:
一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
生活中的应用:
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)一次函数应用常用公式:
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:(x1+x2)/2
3.求与y轴平行线段的中点:(y1+y2)/2
4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |