如图,在平面直角坐标系中,直线y=-43x+12与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO-OB-BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度-数学

题文

如图,在平面直角坐标系中,直线y=-
4
3
x+12与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO-OB-BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒
4
3
个单位长度的速度沿y轴向上平移,移动过程中直线l分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO-OB-BA运动一周回到点A时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:
(1)求A、B两点的坐标;
(2)当t为何值时,点P与点E重合?
(3)当t为何值时,点P与点F重合?
(4)当点P在AO-OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.
题型:解答题  难度:中档

答案

(1)令x=0,得y=12,令y=0,得x=9
∴与y轴交点B的坐标为(0,12),与x轴交点A的坐标为(9,0);
(2)点P在OA上运动的时间为9÷3=3秒,

点E在OB上移动的距离为3×
4
3
=4,
点P和点E重合的时间为:3+4÷(4-
4
3
)=
9
2
秒,
当t=
9
2
秒,点P与点E重合;

(3)点P在OA、OB上运动的时间和为9÷3+12÷4=6秒,
点E在OB上移动的距离为6×
4
3
=8,
AB=

122+92
=15
∵EF∥OA
∴△BEF∽△BOA
BE
BO
=
BF
BA

12-8
12
=
BF
15

解得BF=5,
则点F运动的速度为(15-5)÷6=
5
3
个单位/秒,
∴点P与点F重合的时间为5÷(5+
5
3
)+6=
27
4
秒;

(4)∵EF∥OA
∴△BEF∽△BOA
EF
OA
=
BE
BO

EF
9
=
12-
4
3
t
12

EF=9-t
①当点P在OA上运动,即0<t≤3;
S=
1
2
×(9-t)×
4
3
t=-
2
3
t2+6t;
②当点P在OB上运动,即3<t≤6且t≠
9
2

S=
1
2
×(9-t)×4(t-3)=-2t2+24t-54.

据专家权威分析,试题“如图,在平面直角坐标系中,直线y=-43x+12与x轴交于点A,与y轴交..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐