如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,-2),点D(1,2),BC=9,sin∠ABC=45.(1)求直线AB的解析式;(2)若点H的坐标为(-1,-1),动点G-数学

题文

如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y轴于点E,点C(4,-2),点D(1,2),BC=9,sin∠ABC=
4
5

(1)求直线AB的解析式;
(2)若点H的坐标为(-1,-1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);
(3)在(2)的条件下,当t′=
7
2
秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.
题型:解答题  难度:中档

答案

(1)如图1,过A作AF⊥BC.
∵C(4,-2),∴CE=4.
而BC=9,∴BE=5.
∴B(-5,-2).
∵D(1,2),∴AF=4.
∵sin∠ABC=
4
5
,∴BF=3.
∴A(-2,2).
设直线AB的解析式为y=kx+b,

-5k+b=-2
-2k+b=2
,∴

k=
4
3
b=
14
3

∴直线AB的解析式为y=
4
3
x+
14
3


(2)如图1,由题意:
情况一:G在线段BE上且不与点E重合.
∴GE=5-t′,
S=(5-t′)×1×
1
2
=
5
2
-
1
2
t′;
情况二:G在线段CE上且不与点E重合.
∴GE=t′-5
S=(t′-5)×1×
1
2
=
1
2
t′-
5
2

情况一中的自变量的取值范围:0≤t′<5,
情况二中的自变量的取值范围:5<t′≤9.

(3)如图2,
当t′=
7
2
秒时,GE=5-
7
2
=
3
2

∴G(-
3
2
,-2),直线GH解析式为y=2x+1.
∴N(0,1).
当点M在射线HE上时,有两种情况:
情况一:当点P运动至P1时,∠P1HM=∠HNE.
过点P1作平行于y轴的直线,交直线HE于点Q1,交BC于点R.
由BP1=t,sin∠ABC=
4
5
,可得BR=
3
5
t1,P1R=
4
5
t1,
∴RE=Q1R=5-
3
5
t1,
∴P1Q1=5-
7
5
t1.
∴Q1H=

2
(4-
3
5
t1).
由△P1Q1H∽△HEN得
P1Q1
Q1H
=
HE
EN

∴t1=
7
3

∴当t1=
7
3
时,∠P1HM=∠HNE;
情况二:当点P运动至点P2时,
设直线P2H与x轴交于点T,直线HE与x交于点Q2
此时,△Q2TH∽△EHN
Q2T
Q2H
=
EH
EN
解得Q2T=
2
3
∴T(-
4
3
,0).
∴直线HT的解析式为y=-3x-4,此时直线HT恰好经过点A(-2,2).
∴点P2与点A重合,即BP2=5,
∴t2=5.
∴当t2=5秒时,∠P2HM=∠HNE;
若点M在射线HE上时(点M记为点M1),有两种情况:
情况三:当点P运动至点P3时,∠P3HM1=∠HNE.
过点P3作平行于y轴的直线P3Q3,交直线HE于点Q3,可用求点P1同样的方法.
∴t3=15.
∴当t3=15秒时,∠P3HM1=∠HNE;
情况四:当点P运动至P4时,∠P4HM1=∠HNE.
可得△P4HE≌△THQ2,∴P4E=TQ2=
2
3
.∴t4=17
2
3

∴当t4=17
2
3
秒时,∠P4HM2=∠HNE.
综上所述:当t=
7
3
秒或t=5秒或t=15秒或t=17
2
3
秒时,∠PHM=∠HNE.

据专家权威分析,试题“如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC交y..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐