解答下列各题:(1)计算:2tan60°-(13)-1+(-2)2×(-1)0-|-12|;(2)先化简,再求值:(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=-13;(3)解方程:16x-2=12-21-3x.-数学

题文

解答下列各题:
(1)计算:2tan60°-(
1
3
-1+(-2)2×(-1)0-|-

12
|;
(2)先化简,再求值:(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=-
1
3

(3)解方程:
1
6x-2
=
1
2
-
2
1-3x
题型:解答题  难度:中档

答案

(1)原式=2

3
-3+4×1-|-2

3
|
=2

3
-3+4-2

3

=1;
(2)原式=9x2-4-(5x2-5x)-(4x2-4x+1)
=9x2-4-5x2+5x-4x2+4x-1
=9x-5,
当x=-
1
3
时,
原式=9x-5=9×(-
1
3
)-5
=-3-5
=-8;

(3)去分母得1=3x-1+4,
∴3x=-2,
解这个方程得x=-
2
3

经检验,x=-
2
3
是原方程的解.

据专家权威分析,试题“解答下列各题:(1)计算:2tan60°-(13)-1+(-2)2×(-1)0-|-12|;(2)先..”主要考查你对  零指数幂(负指数幂和指数为1),整式的加减乘除混合运算,解分式方程,特殊角三角函数值  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)整式的加减乘除混合运算解分式方程特殊角三角函数值

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。

考点名称:解分式方程

  • 解法:
    解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
    (1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
    (最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
    (2)解方程:解整式方程,得到方程的根;
    (3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
    否则,这个解不是原分式方程的解,是原分式方程的增根。
    如果分式本身约分了,也要带进去检验。
    在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
    一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
    注意:
    (1)注意去分母时,不要漏乘整式项。
    (2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
    (3)増根使最简公分母等于0。

    分式方程的特殊解法:
    换元法:
    换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  • 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
    解分式方程注意:
    ①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
    ②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
    ③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。

考点名称:特殊角三角函数值

  • 特殊角三角函数值表: