下列运算中,正确的个数有()①m3+(-m3)=m6;②m2?m3=m6;③(-2xy)4=8x4y4;④x3n÷xn=x3;⑤(-5)-2×50=15;⑥(3.14-π)0=1A.1个B.2个C.3个D.4个-数学

题文

下列运算中,正确的个数有(  )
①m3+(-m3)=m6;②m2?m3=m6;③(-2xy)4=8x4y4
④x3n÷xn=x3;⑤(-5)-2×50=1/5;⑥(3.14-π)0=1
A.1个 B.2个 C.3个 D.4个
题型:单选题  难度:偏易

答案

A

据专家权威分析,试题“下列运算中,正确的个数有()①m3+(-m3)=m6;②m2?m3=m6;③(-2xy)4=..”主要考查你对  零指数幂(负指数幂和指数为1),有理数除法,有理数的乘方,整式的加减  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)有理数除法有理数的乘方整式的加减

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:整式的加减

  • 整式的加减:
    其实质是去括号和合并同类项,其一般步骤为:
    (1)如果有括号,那么先去括号;
    (2)如果有同类项,再合并同类项。
    注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

  • 整式加减:
    整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
    合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

  • 整式的乘除法:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐