计算:(1)(-13)-1-(-1)2010+20110-(-12)-2(2)20082-2007×2009.-数学
题文
计算: (1)(-
(2)20082-2007×2009. |
答案
(1)原式=-3-1+1-4 =-7; (2)原式=20082-(2008+1) =20082-(20082-12) =20082-20082+1 =1. |
据专家权威分析,试题“计算:(1)(-13)-1-(-1)2010+20110-(-12)-2(2)20082-2007×2009.-数..”主要考查你对 零指数幂(负指数幂和指数为1),平方差公式 等考点的理解。关于这些考点的“档案”如下:
零指数幂(负指数幂和指数为1)平方差公式
考点名称:零指数幂(负指数幂和指数为1)
- 零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
考点名称:平方差公式
- 表达式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。 - 特点:
(1)左边是两项式相乘,一项完全相同,另一项互为相反数;
(2)右边是乘方中两项的平方差。
注:
(1)公式中的a和b可以是具体的数也可以是单项式或多项式;
(2)不能直接应用公式的,要善于转化变形,运用公式。 常见错误:
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。注意事项:
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
无相关信息
上一篇:计算:|-2|+(13)-1-(π-3)0+(-1)2012.-数学
下一篇:计算:(1)-32+|-3|+(-1)2013×(π-3)0-(12)-1(2)(x+3)2-(x-1)(x-2)(3)(a+1)(a-1)(a2+1)(a4+1)(4)(a-2b-3c)(a-2b+3c)-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |